
Towards Automatically Setting Language Bias in Relational
Learning

Jose Picado
Oregon State University
picadolj@oregonstate.edu

Arash Termehchy
Oregon State University

termehca@oregonstate.edu

Alan Fern
Oregon State University

alan.fern@oregonstate.edu

Sudhanshu Pathak
Oregon State University
pathaks@oregonstate.edu

ABSTRACT
Relational databases are valuable resources for learning novel and
interesting relations and concepts. Relational learning algorithms
learn the definition of new relations in terms of the existing rela-
tions in the database. In order to constraint the search through the
large space of candidate definitions, users must specify a language
bias. Unfortunately, specifying the language bias is done via trial
and error and is guided by the expert’s intuitions. Hence, it nor-
mally takes a great deal of time and effort to effectively use these
algorithms. We report our on-going work on building AutoMode, a
system that leverages information in the schema and content of the
database to automatically induce the language bias used by popular
relational learning algorithms.
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1 INTRODUCTION
Learning novel concepts and relations over relational databases has
attracted a great deal of attention due to its many applications in
machine learning and data management [1, 4, 9]. As an example,
consider the IMDb database (imdb.com) that contains information
about movies and people who make them. A schema fragment is
shown in Table 1. Given this database, one may want to predict
the BigOpenWeek(movieid) relation, which indicates that the movie
with id movieid has made at least two million dollars in its opening
week. Machine learning algorithms often assume that data is or
can be represented in a single table. This table contains the features
that are needed to predict the target relation, e.g., BigOpenWeek.
Normally, we would be required to hand-engineer such fixed set
of features. Each feature would be the result of a query to the
database. We would then compute the features for each example
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movies(id,title,year) actors(id,name,gender)
movies2genres(movieid,genreid) genres(id,name)
movies2directors(movieid,directorid) directors(id,name)
movies2countries(movieid,countryid) countries(id,name)
award(id, personid, desc) . . .

Table 1: Fragment of the schema for IMDb data.

// Predicate definitions
predDef: BigOpenWeek(movieid)
predDef: movies2directors(movieid,directorid)
predDef: movies(movieid,title,year)
predDef: directors(directorid,directorname)
predDef: actors(actorid,actorname,gender)
predDef: award(awardid,directorid,desc)
predDef: award(awardid,actorid,desc)

...
// Mode definitions
mode: BigOpenWeek(+)
mode: movies(+,-,-)
mode: movies(-,-,+)
mode: movies2directors(+,-)
mode: genres(+,-)
mode: genres(+,#)

...
Table 2: A subset of predicate andmode definitions for learn-
ing BigOpenWeek relation over IMDb data.

in the training data. Finally, we would run an algorithm to learn a
model that represents the desired patterns.

There are three obstacles with using such a “table-based ap-
proach”. First, hand-engineering and transforming features is a
tedious process and requires significant expertise. Second, by trans-
forming data into a set of features, we may lose the relational
structure in the database, which may be important and relevant to
the target relation. Third, the result of the algorithm may be hard
to interpret by users.

In contrast to the aforementioned approach, relational machine
learning (also called relational learning) aims at learning concepts
directly from a relational database [1, 4]. Given a database and train-
ing instances of a target relation, relational learning algorithms
attempt to find definitions of the target relation according to the
existing ones [1]. Learned definitions are usually first-order logi-
cal formulas and often restricted to Datalog programs. Relational
learning algorithms are also used to learn the structure of statistical
relational models, such as Markov Logic Networks, over relational
data [4].
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Example 1.1. Given the IMDb database and a training data set of
movies that have made at least two million dollars in their opening
weeks, a relational learning algorithm may learn the following
Datalog program for the missing relation BigOpenWeek based on
the existing relations in the IMDb database:

BigOpenWeek(x ) ← movies2genres(x ,y), genres(y, drama),
movies2directors(x , z), award (t , z,w )

which indicates a movie is in BigOpenWeek if it is a drama movie
made by an award-wining director.

As relational learning algorithms do not require the intermedi-
ate step of feature extraction from relational databases, they are
potentially easier to use [1]. Nevertheless, as the space of possi-
ble definitions (e.g. all Datalog programs) is enormous, relational
learning algorithms must employ heuristics to constraint the search
space. These heuristics are generally specified through a language
bias. One form of language bias is syntactic bias, which restricts the
structure and syntax of the learned Datalog programs. Relational
learning systems usually allow users to specify the syntactic bias
through statements called predicate definitions and mode defini-
tions [1]. Predicate and mode definitions express several types of
restrictions on the structure of the learned Datalog programs, such
as the relations allowed to be in the Datalog program, whether
an attribute can appear as a variable or constant, and whether an
attribute can introduce a new variable. Table 2 shows a fragment of
predicate and mode definitions used for learning the BigOpenWeek
relation over the IMDb database. A detailed explanation of these
definitions is given in Section 3.

Predicate and mode definitions are necessary to make the search
efficient in (statistical) relational learning [1, 4]. Further, it has been
shown that predicate and mode definitions significantly reduce the
running time of (statistical) relational learning algorithms [5]. If
there are no restrictions on the structure of the learned Datalog
programs, a learning algorithm may take a long running time or
may run out of computational resources. To the best of our knowl-
edge, all (statistical) relational learning systems require some form
of language bias to restrict the hypothesis space.

For a relational learning algorithm to be effective and efficient,
predicate and mode definitions must encode a great deal of infor-
mation about the structure of the learned rules [1]. Since a user
has to capture various cases of assigning (repeated) variables and
constants to the attributes of a relation in the Datalog programs, the
number of mode definitions that are written for each relation in the
database may be exponential in the number of its attributes. Clearly,
it will take a lot of time and effort to write and maintain these defi-
nitions, particularly for a relatively complex schema. Furthermore,
a user should both know the internals of the learning algorithm
and have a relatively clear intuition on the structure of effective
Datalog programs for the target relation to set a sufficient degree
of restriction. However, there may not be any user that both knows
the database concepts, such as schema, and has a clear intuition
about the target relation in special domains, such as biology. Hence,
learning a relation requires many lengthy discussions between the
database/machine learning expert and domain experts. Users nor-
mally improve the initial set of definitions via trial and error, which
is a tedious and time-consuming process. Also, it is very hard to
debug predicate and mode definitions. A slight typo in the predicate

and mode definitions may significantly reduce the effectiveness of
learning. Such typos are hard to detect, particularly when learning
is done over a relatively complex schema. In our conversations with
(statistical) relational learning experts, they have called predicate
and mode definitions the “black magic” needed to make relational
learning work and believe them to be a major reason for the relative
unpopularity of these algorithms among users.

Ideally, predicate and mode definitions should be induced auto-
matically. We report the progress of an on-going effort to develop
AutoMode, a system that leverages the information in the schema
and content of the underlying database to induce predicate and
mode definitions automatically.

2 BACKGROUND
An atom is a formula in the form of R (u1, . . . ,un ), where R is a
relation symbol. A literal is an atom, or the negation of an atom.
Each attribute in a literal is set to either a variable or a constant, i.e.,
value. Variables and constants are also called terms. A Horn clause
(clause for short) is a finite set of literals that contains exactly one
positive literal. Horn clauses are also called conjunctive queries.
A Horn definition is a set of Horn clauses with the same positive
literal.

Relational learning algorithms learn Horn definitions from input
relational databases and training data. The learned definitions are
called the hypothesis, which is usually restricted to non-recursive
Datalog definitions without negation, i.e., unions of conjunctive
queries, for efficiency reasons. The hypothesis space is the set of all
possible Horn definitions that the algorithm must explore.

Relational learning algorithms search over the hypothesis space
to find the hypothesis that best deduces the training data. More for-
mally, given a database instance I , positive examples E+, negative
examples E−, and a target relationT , the task of a relational learning
algorithm is to find a definitionH forT such that∀p ∈ E+,H∧I |= p
(completeness) and ∀p ∈ E−,H ∧ I ̸ |= p (consistency). Training ex-
amples E are usually tuples of a single target relation T , which
express positive (E+) or negative (E−) examples. The learned defi-
nitions are called the hypothesis H . Example 1.1 shows an example
of a learned definition for the target relation BigOpenWeek over
the IMDb database. Relational learning algorithms typically follow
one of two approaches to search over the hypothesis space. Top-
down algorithms [9] start from the most general hypothesis and
employ specialization operators to get more specific hypotheses.
On the other hand, bottom-up algorithms [7] start from specific
hypotheses that are constructed based on training examples, and
use generalization operators to search the hypothesis space [1].

3 LANGUAGE BIAS
Relational learning algorithms employ a language bias to restrict the
hypothesis space. In this paper, we focus on syntactic bias, which
restricts the structure and syntax of the candidate clauses. Syntactic
bias allows the hypothesis space to contain hypotheses that an
expert would deem as promising, e.g., hypotheses do not contain
meaningless joins. In particular, we focus on predicate and mode
definitions [1]. Most relational learning algorithms [1, 7, 9] take as
input similar statements to specify a syntactic bias. We now explain
the information contained in predicate and mode definitions.
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Candidate relations: An atom can be placed in a candidate
clause only if there is at least one predicate and mode definition
with relation symbols equal to the relation symbol of the atom.

Predicate definitions: Predicate definitions assign a semantic
type (type for short) to each attribute in a database relation. For
instance, for the relation movies, the predicate definition movies
(movieid,title,year) in Table 2 indicates that the first, second,
and third attributes in the relation movie are of types movieid, ti-
tle, year, respectively. It is possible to assign multiple types to an
attribute. For example the predicate definitions award(awardid,
directorid,desc) and award(awardid,actorid,desc) indi-
cate that the attribute personid in relation award in Table 1 be-
longs to both types directorid and actorid. Two attributes can be
assigned the same variable or constant in a clause only if they
belong to the same type. For instance, given predicate definitions
movies(movieid,title,year) and movies2directors
(movieid,directorid), relations movies and movies2directors
can join only on attributes movies.id and movies2directors.movieid
because they have the same type movieid. Two relations cannot
join if they do not contain at least one attribute with the same type.
If all attributes in all relations have the same type, then all relations
can join with each other on every attribute. This can make the
learning algorithm very inefficient. Therefore, types set restrictions
so that the algorithm can run efficiently.

Modedefinitions:Mode definitions set restrictions on the terms
that appear in the atoms of a clause. This is done by writing some
statements for each relation, and assigning a symbol to each at-
tribute in the relation. The symbols + and − indicate that a term
should be a variable. Symbol + indicates that a term must be an
existing variable, except for the atom in the head of a Horn clause.
Symbol − indicates that a term can be an existing variable or a new
variable, i.e., an existentially quantified variable. For instance, the
mode definition movies(+,-,-) in Table 2 indicates that the first
term must be an existing variable and the next two terms can be ei-
ther existing or new variables. In some domains, it is useful to have
atoms that contain constants. Symbol # indicates that a term should
be a constant. For instance, the mode definition genres(+,#) in
Table 2 indicates that the first term must be an existing variable and
the second term must be a constant. Each atom in every clause in
the hypothesis space must satisfy at least one mode definition in the
list of mode definitions. Thus, having definitions movies(+,-,-)
and movies(-,-,+) in Table 2 implies that in atoms with relation
movies, either attribute id or attribute year must be set to an exist-
ing variable in the clause. In each case, the rest of the attributes
in movies will be set to new or existing variables. Similarly, defi-
nitions genres(+,-) and genres(+,#) in Table 2 indicate that
the attribute name in the relation genres can be set to either a
constant or a variable. If all attributes are allowed to be variables
and constants, then the algorithm may generate very long clauses.
This is because it would generate multiple atoms for a single tuple.
For instance, given tuple genres(g1,drama) and mode definitions
genres(+,-), genres(-,+), genres(+,#) and genres(#,+), a
clause would would contain atoms genres(y,u), genres(y,drama) and
genres(g1,u). Restricting the number of attributes that are allowed
to be constants may drastically reduce the number of atoms in a
clause, hence making the learning algorithm more efficient.

movies2directors(gravity,cuaron) award(a1,cuaron,oscar)
movies2directors(revenant,inarritu) award(a2,inarritu,bafta)
movies2genres(gravity,g1) genres(g1,drama)
movies2genres(revenant,g1)

Table 3: Fragments of the IMDb database.

4 AUTOMODE SYSTEM
4.1 Finding Candidate Relations
AutoMode assumes that the clauses in the hypothesis space can
contain any relation in the schema. Therefore, AutoMode reads the
schema information, such as the list of relations and attribute names,
from the RDBMS and generates at least one predicate definition
and one mode definition for each relation.

4.2 Generating Mode Definitions
We have implemented AutoMode over the bottom-up relational
learning system Castor [7]. In the first step, given a subset of posi-
tive examples, Castor constructs the most specific clause that covers
each example, relative to the database. These clauses are called bot-
tom clauses. In the second step, it applies a generalization operator
to these clauses to create a clause that generalizes all of them.

Example 4.1. The following clauses C1 and C2 are the bottom
clauses associatedwith positive examples e1 = BigOpenWeek(revenant)
and e2 = BigOpenWeek(gravity), respectively, relative to the data-
base instance shown in Table 3.

C1 = BigOpenWeek(revenant) ← movies2genres(revenant,g1),
genres(g1,drama),movies2directors(revenant,inarritu),
award (a2,inarritu,bafta).

C2 = BigOpenWeek(gravity) ← movies2genres(gravity,g1),
genres(g1,drama),movies2directors(gravity,cuaron),
award (a1,cuaron,oscar).

When constructing a bottom clause, AutoMode forces at least
one variable in an atom to be an existing variable, i.e., appears in
previously added atoms, to avoid generating Cartesian products
in the clause. AutoMode generates one mode definition for each
attribute of each relation. In each mode definition, AutoMode as-
signs the + symbol to exactly one attribute and the − symbol to all
remaining attributes. This means that all attributes are allowed to
have new variables, except the attribute with symbol +.

Instead of indicating which attributes can be constants in mode
definitions, AutoMode’s approach is to postpone this decision to the
generalization step in learning. The least general generalization (lgg)
operator takes as input two clauses C1 and C2, and generates the
clause C that is more general than C1 and C2, but the least general
such clause [1]. While doing this, it automatically generates new
variables to generalize constants in C1 and C2.

The lgg operator is defined as follows. The lgg of two clauses C1
and C2 is the set of pairwise lgg operations of compatible atoms
in C1 and C2. Two atoms are compatible if they have the same
relation name and same polarity (either positive or negative). Let
R (t1, · · · , tn ) and R (s1, · · · , sn ) be two atoms. The lgg of two atoms
is lgg(R (t1, · · · , tn ),R (s1, · · · , sn )) = R (lgg(t1, s1), · · · , lgg(tn , sn )).
The lgg of two atoms with different relation symbol or opposite
polarity is undefined. The lgg of two identical terms (either variables
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or constants) is lgg(t , t ) = t . The lgg of two distinct terms (either
constants or variables) is lgg(t , s ) = vts , wherevts is a new variable
associated with t and s .

Example 4.2. Given the bottom clauses C1 and C2 shown in Ex-
ample 4.1, lдд(C1,C2) is

BigOpenWeek(vrд ) ←

movies2genres(vrд , g1), genres(g1, drama),
movies2directors(vrд ,vic ), award (va2a1 ,vic ,vbo ).

The current implementations of lgg only run over small databases
that satisfy certain restrictions, which do not generally hold for real-
world databases [1]. The reason is that the lgg operator generates
very large clauses whose evaluations take prohibitively long time.
This is because the size of a clause generated by lgg(C1,C2), is
bounded by |C1 | × |C2 |, where |Ci | is the number of literals in Ci .
Then, the size of a clause resulting from multiple lgg operations
can grow exponentially with the number positive examples.

Our implementation of the lgg operator over Castor [7] is able
to scale to databases with about two thousand tuples and without
any restrictions. It is able to do so thanks to the following reasons.
Castor is implemented on top of the in-memory database VoltDB.
The indexing mechanism in VoltDB allows Castor to efficiently
build bottom clauses. Further, Castor uses a subsumption engine
that allows it to evaluate clauses efficiently. We are in the process
of scaling our system to larger databases.

5 EXPERIMENTS
We have run experiments over the UW-CSE database, which con-
tains information about a computer science department (alchemy.cs.
washington. edu/data/uw-cse). This is a benchmark database used
in relational learning literature. We learn the target relation ad-
visedBy(stud, prof), which indicates that student stud is advised by
professor prof.

We have used four ways of setting syntactic bias in addition to
AutoMode. Baseline generates predicate and mode definitions au-
tomatically. It assigns the same types to all attributes in all relations
and allows every attribute to be a variable or a constant. Baseline
without constants is the same as the baseline, except that it does
not allow any attribute to be a constant. Manual tuning uses the
the syntactic bias written by an expert. The expert had to learn the
schema and go through several trial and error phases by running the
underlying learning system and observing its results to write the
predicate and mode definitions manually. Aleph [8] is a relational
learning system able to induce predicate and mode definitions from
data. Because AutoMode does not currently have the functionality
to generate predicate definitions, it simply assigns the same types
to all attributes in all relations. We run experiments on a 2.6GHz
Intel Xeon E5-2640 processor and 50GB of main memory.

Table 4 compares AutoModewith the aforementionedmethods in
terms of precision, recall and learning time. The predicate and mode
definitions extracted by Aleph over restrict the hypothesis space,
resulting in a precision and recall of 0. AutoMode is generally more
accurate than the baseline methods and manual tuning. However,
it is less efficient. We note that for manual tuning, the expert has
to spend additional time to understand the database and (re)write
the predicate and mode definitions via trial and error.

Measure Baseline Baseline Manual Aleph AutoMode(w/o const.) tuning
Precision 0.78 0.96 0.93 0 0.96
Recall 0.49 0.48 0.54 0 0.52
Time (s) 30 3.8 8 5 44

Table 4: Results of learning relations over the UW-CSE database.

6 RELATEDWORK
There has been interest in reducing the user input in relational learn-
ing systems. Similar to AutoMode, the work in [6] and the relational
learning system Aleph [8] induce predicate and mode definitions
from data. The mode definitions generated by these methods may
over restrict the hypothesis space because they require multiple
attributes to be existing variables. The algorithm in [6] does not
generate mode definitions that allow constants. Aleph allows all at-
tributes to be constants. AutoMode assigns constants only to some
attributes and based on data.

The algorithm in [3] discovers semantic types by first convert-
ing attributes of objects into unary predicates and then searching
for unary predicates that semantically refer to the same attribute.
The algorithm MILE [2] induces mode definitions from training
examples of the target relation. Their setting assumes that examples
consist of Horn clauses. This is different from our setting, where
examples are ground atoms. There has been a growing interest
in developing relational learning algorithms that scale to large
databases [9]. These algorithms must restrict the hypothesis space
through language bias or use a more restricted data model.

7 FUTUREWORK
We have presented our on-going work on building the AutoMode
system. We plan to use heuristics to generate mode definitions
that scale to large databases. Further, we plan to use database con-
straints to find attribute types and induce predicate definitions. We
believe that this work is crucial to make relational learning useful to
ordinary users, as they do not need to write language bias manually.
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