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Abstract. Adverse drug events (ADEs) are a major concern and point of emphasis
for the medical profession, government, and society. A diverse set of techniques from
epidemiology, statistics, and computer science are being proposed and studied for ADE
discovery from observational health data (e.g., EHR and claims data), social network
data (e.g., Google and Twitter posts), and other information sources. Methodologies
are needed for evaluating, quantitatively measuring, and comparing the ability of these
various approaches to accurately discover ADEs. This work is motivated by the ob-
servation that text sources such as the Medline/Medinfo library provide a wealth of
information on human health. Unfortunately, ADEs often result from unexpected in-
teractions, and the connection between conditions and drugs is not explicit in these
sources. Thus, in this work we address the question of whether we can quantitatively
estimate relationships between drugs and conditions from the medical literature. This
paper proposes and studies a state-of-the-art NLP-based extraction of ADEs from text.
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1. Introduction

Adverse drug events (ADEs) have been receiving substantial national attention
since an Institute of Medicine (IOM) report found serious gaps in pharmaco-
surveillance capacity, flagging this task as a top research priority and prompt-
ing a series of recommendations to the FDA’s Center for Drug Evaluation and
Research (CDER) [1]. The problem is felt worldwide, with initiatives stem-
ming from international entities such as the European union’s EU-ADR [2] and
PROTECT1. Responses in US have included the FDA’s Sentinel Initiative and

1 http://www.imi-protect.eu/



2

Mini-Sentinel, the Observational Medical Outcomes Partnership (OMOP)2 , the
Reagan-Udall Foundation (RUF), and the Innovation in Medical Evidence Devel-
opment and Surveillance (IMEDS) 3 arm of RUF that incorporates and builds
upon content from the earlier OMOP and Mini-Sentinel. These organizations
have driven, or currently are driving, significant research into statistical and
computational methodologies [3, 4, 5, 6] for post-marketing surveillance of drugs
by analyzing observational clinical data in the form of claims and electronic
health record (EHR) databases, as well as in some cases social media and other
semi-structured data, e.g., text and natural language processing (NLP). Mean-
while the problem of ADEs has continued to grow in impact and importance.
In 2012, the Office of Disease Prevention and Health Promotion in the U.S. De-
partment of Health and Human Services published a draft National Action Plan
for Adverse Drug Event Prevention4, which notes that in the U.S. alone ADEs
are responsible for:

– one-third of all adverse events of any kind during hospital stays and affect two
million stays annually [7]

– over 3.5 million physician office visits [8] and 1 million ER visits [9]

– $3.5 billion in U.S. health care costs [10]

To summarize, the primary contribution of our work is to present a prob-
abilistic method for summarizing what the research community knows about
ADE pairs. The approach is a novel application of recent advances in machine
learning for information extraction and NLP. Our approach builds upon the use
of Markov Random Fields (MRF) that have been successfully employed within
the NLP community [11]. We use a template representation of these MRFs using
a formalism called Markov Logic Networks (MLN) [12]. Our second contribution
is a quantitative evaluation of the approach to the specific application of NLP
for ADE discovery. In addition to the quantitative evaluation, we also give a
qualitative evaluation that examines the strengths and weaknesses of the ap-
proach for this application. Based on this qualitative evaluation, we extend our
framework to incorporate training of these MLNs and subsequently MRFs based
on the data. The initial expert-based MLN exhibits competent performance but
can be improved when data are used to “refine” the MLN.

It must be mentioned clearly that the aim of this paper is to demonstrate
that for OMOP definitions and similar definitions, we can use the literature to
verify complex definitions in our case, OMOP. As far as we are aware, not many
NLP techniques are proposed for these definitions. Hence, we could not compare
against any standard technique that uses NLP. Also, as shown clearly in our
empirical evaluations (and the citations in there), our results are comparable or
better than the current ADE methods that operate using OMOP definitions.

To summarize, we propose a probabilistic method that given a drug-effect
pair searches PubMed for abstracts and converts these abstracts to standard
NLP features. These features are then used in a probabilistic classifier based
on MLNs to obtain a distribution over whether the drug-effect pair is indeed
an ADE. In the rest of the paper, we first discuss the prior work and provide
the required technical background on MLNs and NLP. We then present our

2 http://omop.org/
3 http://imeds.reaganudall.org/
4 http://www.health.gov/hai/pdfs/ADE-Action-Plan-508c.pdf
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approach in detail before the evaluation on OMOP ADE pairs. We next provide
an in-depth discussion of the salient features of the approach before concluding
by presenting avenues for future research.

2. Background

To make this paper self-contained, we begin with a discussion about the OMOP
initiative, followed by a brief tutorial on Information Extraction, MLNs and their
use for NLP.

Initiative by OMOP: In 2009, FDA, PhRMA, and the Foundation for the
NIH initiated the Observational Medical Outcomes Partnership (OMOP) – which
has now fed into the Reagan-Udall Foundation (RUF), specifically Innovation in
Medical Evidence Development and Surveillance (IMEDS) – to evaluate and im-
prove methods for discovering ADEs from observational medical data, such as
health insurance claims data, Medicare and Medicaid data, or electronic health
record (EHR) data [13]. To facilitate evaluation and comparison of methods
and databases, OMOP established: a Common Data Model so that disparate
databases could be represented uniformly; definitions for ten ADE-associated
health outcomes of interest (HOIs); and drug exposure eras for ten widely-used
classes of drugs. OMOP’s 2010 evaluation had on average three different compet-
ing definitions for each HOI ranging from a most- to a least-stringent definition.
These definitions employed ICD9 codes and other data types yielding a total of
30 HOI definitions. The end goal of this work was to encourage the development,
quantitative evaluation, and comparison of methods for uncovering new (previ-
ously unknown and perhaps even unanticipated) ADEs. To evaluate methods,
it is necessary to use known ADEs as ground truth and determine how well the
new methods could have uncovered these ADEs had they been unknown. At its
initiation, OMOP took a rigorous approach based on available drug label infor-
mation to associate drug classes with HOI definitions [14]. Methods were then
evaluated by their ability to correctly rank the pairs from most likely to least
likely to be a true association. Ranking quality was evaluated by area under the
receiver operating characteristic (ROC) curve, or AUCROC.

We use the OMOP definitions for the quantitative evaluation of our approach.
We first evaluate our NLP approach on the 2010 OMOP ground truth and show
that our approach yields a high AUCROC with respect to that ground truth.
We then look more closely at where our system’s results disagree with OMOP’s
ground truth. In some instances this investigation reveals probable errors in
OMOP’s ground truth, owing either to OMOP’s high standard of evidence (drug
labels) for ADEs or to discoveries occurring after OMOPs initiative. In other
instances this investigation reveals shortcomings in our current approach that
point to directions for further research.

Information Extraction: Information extraction (IE) [15, 16, 17, 18] is
the process of automatically extracting structured information from unstructured
data, where unstructured data consists of machine-readable documents. One of
the tasks involving information extraction is relation extraction, which consists
of identifying instances of entities in text and the relationships between those
instances. Adverse drugs events discovery is a relation extraction problem, where
the entities are drugs and health outcomes, and the relations indicate whether a
health outcome is an adverse effect associated with taking a drug.

Many approaches have been developed to extract adverse drug events from a
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large number of diverse information sources. Gurulingappa et al. [19] used super-
vised learning methods, such as Nave Bayes, Decision Trees, Maximum Entropy
and Support Vector Machines, to perform automatic identification of adverse
drug event assertive sentences, by exploiting lexical, syntactic and contextual
features. Friedman [20] describes an approach that uses the Electronic Health
Records (EHR) to extract novel adverse drug events based on coded data (struc-
tured) and narrative records (unstructured). Shetty and Dalal [21] performed
disproportionality analysis on PubMed articles that mention a drug and adverse
effect (AE) to discover new drug-AE associations. Bian et al. [22] used Twitter
data to mine drug-related adverse events by building a classifier over textual and
semantic features.

We use IE techniques in order to extract knowledge about text patterns and
string similarities and assign scores to the proposed ADEs. Consider an expert
(say an epidemiologist) that is evaluating a set of adverse events by scanning
through a set of abstracts. He/she will scan each abstract looking for patterns
that mark the presence or absence of adverse events. Only in very few cases
can the expert have full confidence in a pattern. Instead, the expert will rely on
sets of patterns, where some definitely will be stronger than others. Moreover,
patterns may reinforce or weaken each other. The strength of a pattern thus
depends both on the context where it is applied and on the other patterns being
considered.

We aim to quantify these mental patterns by using a descriptive language such
as first-order logic and model the uncertainty by weights (or probabilities). More
precisely, we shall assume that drugs and conditions are random variables that
may be present or absent in a empirical study. Patterns connect these random
variables. We observe that the work of the expert is based on the principle that
the same patterns will repeat in different abstracts. In other words, abstracts
are not a random bunch of items, or random variables. Instead, the items are
connected through a set of applicable rules.

The most commonly used NLP methods are Conditional Random Fields
(CRFs) [23] which are essentially special cases of the more general Markov Ran-
dom fields (MRFs). An MRF is an undirected graphical model that consists of
a set of nodes (V) and edges (E). They factor the joint probability distribution
over the variables as products of clique potentials5. Assuming that each node in
V is a random variable, the MRF defines a distribution over V as a product of
potentials. For example, in Figure 1, there are three nodes A, B and C. Since
there is no clique of size 3 in the Figure (i.e., no triangle) , the joint distribution
over the three variables,

P (A,B,C) =
φ(A,B)φ(B,C)

Z
(1)

where φ is the potential of the clique and Z is the normalization term (Z =∑
A,B,C φ(A,B)φ(B,C). Typically, the structure of the model (the cliques) are

defined Apriori and parameters (φ) are learned using data. While they are popu-
lar, designing specific MRFs for the problem at hand requires a machine learning
expert. On the other hand, elucidating knowledge from domain experts is more
natural if the formalism employed underneath is a general purpose one. First-

5 A clique in a graph is a fully connected sub-graph of the original graph. A triangle is a clique
of size 3, an edge is of size 2 and a fully connected square with both diagonals if of size 4.
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Fig. 1. An example of a MRF. A,B,C are the three variables and φ are the potentials between
the cliques. Note that the largest clique is of size 2. Given these parameters, the final joint
distribution can be obtained by the product of these potentials (normalized).

order logic has been employed specifically in the Artificial Intelligence community
for this purpose.

Also, Random Fields are most often used when there is a regular relation be-
tween items: a sequence of words in text CRFs or a pixel array in vision MRFs.
They provide a very effective approach to compute a collective probability. Un-
fortunately, the textual ordering in the abstract is clearly not directly relevant
to our task. This suggests that we need a flexible representation. well suited for
irregular and structured problems.

Markov Logic Networks: Hence, we employ the first-order logic formalism
of Markov Logic Networks (MLNs) [12] to model the relationships described
in the textual data. An MLN consists of weighted first-order formulas where
the first-order formula captures the structural (qualitative) relationship between
objects of interest while the weight of the formula quantifies the strength of the
relationship. Each first-order formula is called a clause. Consider the following
two MLN clauses:

0.5 smokes(x) −→ cancer(x)

1.0 friends(x, y) ∧ smokes(x) −→ smokes(y)

The first clause expresses the knowledge that if a person (denoted by x),
smokes, then he/she is likely to have cancer. The second clause expresses the
idea that if two persons are friends and one of them smokes, the other is likely
to smoke as well. Note that x and y are variables that can be instantiated with
values such as Ann, Bob, Cathy, etc. The numbers in each of the MLN clauses are
essentially log-odds and hence the probability of friends having similar smoking
habits is log(1/0.5) times more likely in the world compared to smoking causing
cancer.

In order to apply this technique, we need : the set of rules; the set of weights;
and an algorithm to compute probabilities.

One of the key reasons for using MLNs to capture relation extraction knowl-
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Fig. 2. Example MRF generated from the MLN. We consider only the second clause with
two groundings Ann and Bob. Each predicate is instantiated with appropriate values for the
variables leading to the MRF. This example serves to provide the intuition that MLNs can be
simply viewed as templates for constructing MRFs. The cliques all share the same potential.

edge is that MLNs provide an easy way for a domain expert to specify the
background knowledge as first-order logic clauses. We therefore assume that the
rules were obtained from an expert. Most algorithms learn the weights of these
rules from data. Given the variety of possible algorithms and how they depend
on combinations of parameters, we asked our expert to propose a set of weights,
In order to simplify this task, all our rules have a simpler form: implication
statements of the form a(X) −→ b(X).

MLNs can be seen as MRF generators. Given a MLN and the set of possible
values for the variables, eg Ann and Bob in Figure 2 (called groundings), most
algorithms construct a MRF. In the example shown in Figure 1, there are two
people Ann and Bob. Correspondingly, there are two smoker nodes and four
friends nodes in the MRF. Friends(x, y) denotes that person x is a friend of
person y. A person can be a friend of him/herself, thus, Ann is a friend of her
and Bob is a friend of himself. The weights are “shared” among all the instances
of the same clause. For instance, the potential on the MRF corresponding to all
instances of people smoking and being friends is the same and will be equal to
1 in this case. Similarly, the weights of the cancer-smokes clique will all be the
same and equal to 0.5.

We use MLNs as a template for constructing irregular MRFs, that are the
standard in the NLP literature. The use of MLNs allows us to generalize across
multiple documents and ADE pairs. For instance, in our experiments, using 50
documents on 27 ADE pairs with 15 rules yielded a MRF of about 10, 000 nodes.
Constructing this 10k node MRF manually will be extremely cumbersome and
employing the use of MLNs allows us to bypass this issue and achieve effective
generalization. What we exploit is an automatic construction of the ground MRF
that requires minimal effort from the expert.

Most algorithms assume that an expert specifies the set of the rules and
simply learn the weights of these rules from data. This weight learning process
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must be distinguished from query time inference where the set of rules and the
corresponding weights are provided and the system can be queried for a particular
situation. For instance, in the example, one can query the probability of someone
having a cancer given that his/her friend is a smoker.

It must be mentioned that while MLNs allow for the full first-order logic
syntax to be employed in sentences, for the purposes of this work, we only use
implication statements of the form a(X) −→ b(X) which essentially states that
attribute b must be true whenever attribute a is true for a particular object X.
While in simple logic, this is a strong statement, MLNs allow for a softer form
that is more probabilistic. If the weight of this statement is high, then b will
mostly likely be true when a is true but if the weight is negative, it is mostly
likely to be false. We refer to the book by Domingos and Lowd [12] for more
details. In our work, we use the Tuffy system [24] to perform inference on the
MLNs. One of the key advantages of Tuffy is that it can scale up to millions of
documents.

Using MLNs for NLP: Several approaches have been proposed for knowl-
edge extraction in general from biomedical literature. Riedel et al. [25] and Poon
and Vanderwende [26] proposed approaches based on Markov Logic to perform
biomedical event extraction, getting competitive results in the BioNLP09 Shared
Task. These methods are shown to outperform standard machine learning algo-
rithms on NLP tasks. They employed MLNs that used syntactic (word form) and
semantic features (dependency paths) to capture the models for the extraction
of nested-bio-molecular events from research abstracts, and then performed joint
inference using these models. MLNs have become popular in biomedical extrac-
tion tasks, as has been demonstrated in the BioNLP11 Shared Task, where the
top systems [27, 28] employed approaches based on Markov Logic. One of the
key attractive features of MLNs is that they are based on first-order logic and
hence allow for generalizable knowledge that can be used across multiple tasks.
Another attractive feature of these MLNs is that the expert can simply write
as many rules in first-order logic and efficient learning algorithms exist that can
learn the weights (these weights reflect how true the rules are).

3. Extracting ADEs from Text

We now provide the details of our proposed method.

3.1. Markov Logic Networks for ADE Extraction

Our approach for evaluating adverse drug events is presented in Figure 3. The
system can be defined as follows:

Given: A set of 〈drug(s), condition(s)〉 tuples
To Do: Determine P(drug(s) cause condition(s)) i.e., output the proba-

bility that a given (possibly set of) condition(s) is an adverse event of (possibly
a set of) drug(s) by using prior published research as evidence.

The aim of our work is to quantify what the research community knows about
the drug-event (DE) pairs as a probabilistic function. Note that while we refer
to the events as drug-event pairs, our methods are not restricted to just pairs
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but can handle complex interactions such as multiple drugs/conditions causing
multiple adverse conditions. In this work, we restrict ourselves to drug-event
pairs (henceforth called as DE) only for simpler exposition of the ideas and for
comparison to OMOP ground truth.

3.1.1. Searching for relevant abstracts:

Given this problem definition, the first step is to obtain the set of previously
published literature that provides evidence about the given drug-event pair, or
DE. To this effect, we query PubMed for a given set of DEs. An example query
is “ACEInhibitor Angioedema”. For each DE, we obtain a set of articles. We
consider only the abstracts of these articles in this work (but our model can
handle full articles). For this step,

Input: A set of DEs
Output: A set of K PubMed abstracts for each DE.

These top K articles serve as the natural language textual evidence for the
pair. For each article, we use two features to “weigh” the importance of the
article: (1) Eigenfactor [29] of the journal and (2) the recency of the article.
We use the eigen factor values for each article directly. The articles in PubMed
are in different stages of verification and to ensure authenticity we only use the
articles which are finally approved by PubMed. For recency, we used a discount
factor of 0.9. We experimented with several other discount factors in the range
of 0.6− 0.95 and found that beyond 0.7, the results did not change significantly.
If the article is published within the last year, it has a weight of 1, and every
preceding year after that has its weight lowered by a multiplicative factor of 0.9
(i.e., 2 years old article has a weight of 0.9, 3 years old article will have a weight
of 0.81, fours years old has a weight of 0.72 etc). The intuition is that most recent
articles published in high-quality journals will have a higher weight than more
recent articles in low quality journals and older articles in high-quality journals.

The key idea is that we aim to model a human expert who does not rely
on a single article to infer a meaningful association between drugs and events
but rather rely on a broad set of articles. Not each of these articles are consid-
ered equally important by the expert and hence we use the weights accordingly.
The choice of the parameters, although made before the experiments started,
seem reasonable for the task at hand. The parameter K indicates how many
publications will refer to the ADEs. Increasing K increases the sensitivity of the
algorithm, but will also reduce precision and is computationally expensive. We
chose K=50 before the experiments, in order to ensure the MLN system can
compute the probabilities in feasible time These abstracts serve as the input to
the next stage.

The second stage of our approach has two distinct phases (1) String similarity
phase, and (2) Semantic relation extraction phase. We describe these two phases
separately to demonstrate that standard information retrieval measures may not
suffice in the task of identifying ADEs and that the task requires more semantic
understanding of the text.

For each abstract obtained in the first step, we identify the sentences that
contain the corresponding DE pair, i.e. sentences that contain both the drug and
the condition. Note that we do not distinguish yet whether the DE is an adverse
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Fig. 3. Steps involved in the evaluation of adverse drug events (ADEs).

event or not, or simply if the drug and the condition are related, we just keep
the sentences plain text to be used in the next step.

3.1.2. String Similarity:

For the string similarity step,

Input: The given set of 50 abstracts and the current DE.
Output: The average string similarity scores between the DE and the con-

sidered abstracts.

In the string similarity phase, we use simple document matching metrics such
as cosine similarity, Jaccard similarity, Jaro-Winkler similarity and Sorensens
similarity [30]. The goal of this phase is to obtain a syntactic measure of the
similarity between the DE pair and the abstract at hand. In other words, given
a DE we find its support in the text. Note that this measure simply searches for
mentions and thus does not distinguish between whether a given DE is an adverse
event or not, or if there is no relationship between the drug and the condition.
Cosine similarity measures the cosine of the angle between two vectors, where
the vectors are the frequency of occurrence vectors of the documents. In our case,
vectors store the occurrence of letters. While in this step we only compute string
similarities between each DE and literature found on the web, these can also
be seen as evidence in the MLN constructed in the second step. Note that the
use of string similarities gives us a good baseline. This is typically the approach
used by many systems that do not explicitly parse the entire medical abstract
but compute some “distance” between the query and the abstract. The aim of
this step is to demonstrate the value of deeper understanding of text to better
improve the identification of ADE from text.
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3.1.3. Semantic relation extraction:

Semantic relation extraction on the other hand aims to identify features that
can be employed for a deeper analysis of the given text.

For the semantic similarity step,

Input: The given set of 50 abstracts and the current DE.
Output: Probability that the current DE is actually an ADE based on the

50 extracted abstracts.

To obtain the relevant features, we run the sentences obtained in the previous
step through a standard NLP tool such as the Stanford NLP toolkit [31, 32] to
create relational linguistic features. The created relational features are lexical,
syntactic and semantic features, such as part-of-speech tags, phrase types, word
lemmas, parse trees and dependency paths, which provide a representation of
grammatical relations between words in a sentence. These are standard features
used in the natural language processing literature and we find them to be very
useful in our problem as well. These features are used to identify a deeper inter-
action between the drug and adverse event mentions in the text. For instance,
it is useful to say that if the drug and object has a dependency path between
them and the word “causes” appears in the dependency path, there is a chance
that the drug causes the effect. Note that this is not always true and hence this
knowledge is treated as probabilistic (weighted and uncertain) knowledge.

In addition to these features, we use an entity recognizer to identify drug
and effect mentions. For example consider the following text: “There is evidence
that MI is caused by the intake of Cox2ib”. This sentence would lead to the
features drug(Cox2ib) and effect(MI). These features (called as predicates in
MLN literature) are then used as evidence to query the MLN for probable adverse
event.

These relevant features along with the similarity scores are together consid-
ered while constructing the rules in the next step. A high-level flow of this step
is presented in Figure 4. As can be seen, we run the 50 abstracts from PubMed
through the NLP parser (Stanford NLP in our case). These are then used to
create NLP features (they are presented in detail in Appendix). These features
are then used in the MLN as we discuss below.

Drugs, effects, and the relationship between them form the evidence. Note
that after having the information about drugs and effects, we use the features
drug and effect to define a MLN clause that indicates that the drug d with word
dw, and effect e with word ew, are present in an ADE r:

effect(e), effectWord(e,ew), drug (d), drugWord(d,dw),
present(r,d), present (e,d) --> deADE(r,d,dw,e,ew)

dw and ew are variables and will be substituted by the corresponding values
when performing reasoning. If we add a weight of infinity to this rule, then it
means that this rule is always true. For the example in the above paragraph,
dw could correspond to Cox2ib and ew could correspond to MI. Then the rule
simply states that if the same sentence has Cox2ib as the effect and MI as the
drug then it is always true that the adverse effect of Cox2ib is MI. Of course,
since this is not always true for other drug and effect pairs, they are considered
to be probabilistic and hence we soften them using weights that are then used
to create potentials of the ground MRF.
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Fig. 4. Steps involved in the deeper semantic extraction phase that employs MLNs. The
extracted 50 PubMed abstracts are given as input to a NLP parser. The resulting parse trees,
dependency graphs, parts of speech and other NLP features are then converted to MLN format
(first-order logic facts). They are then used as input along with the current query DE to obtain
the final posterior distribution.

[h]

Weight Rules Type

wgt cosineSimilarityWeight(r, wgt) ⇒ adverse(r) Sim

1 dpDE(r) ⇒ adverse(r) Basic

3 deADE(r,d,dw,e,ew), preHW(wo,dw), postHW(wo,postwo), Basic
ws(postwo,“induced”), dt(ar,se,ew,wo,AMOD) ⇒ adverse(r)

1.5-3 deADE(r,d,dw,e,ew), dp(ar,se,ew,dw,dp), contains(dp, Prep
(∝ l) “prep after”), dpL(ar,se,ew,dw,l) ⇒ adverseC(r, l)

1.5-3 deADE(r, d, dw, e, ew), word(wo), ws(wo, “risk”), Prep
(∝ l) dp(ar, se, wo, ew, dp1), dp(ar, se, wo, dw, dp2),

dpL(ar, se, ew, dw, l), contains(dp1, “prep of”),
contains(dp2, “partmod”) ⇒ adverseC(r, l).

Table 1. A sample of the relation extraction knowledge. dpDE denotes that there is a depen-
dency path between the drug and effect in a proposed ADE (they are in the same sentence),
deADE denotes that drug and effect are in a proposed ADE, dp denotes the dependency path
between two words, dpL denotes the length of the dependency path between two words, preHW
denotes prehyphen word, postHW denotes posthyphen word, ws denotes word string, dt de-
notes dependency type. Rules are classified into rule types based on the features used shown
in Type column.
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adverseC is an intermediate target predicate that represents the length of the
dependency path between the drug and the effect. The shorter length indicates
a stronger correlation between the drug and the effect. Note that the weights are
set based on the length of this path. Shorter the path, higher the weight. Please
refer to appendix for more weights. The weights simply indicate the relative
importance of one rule over the other.

Once we have the drugs, effects, DE pairs, string similarities and textual
evidence, we employ an MLN that captures the relation extraction knowledge
for identifying ADEs using rules about text patterns and string similarities. Some
of the example rules (out of the 15 rules that we use) that we used to capture
text patterns and string similarities are shown in Table 1. The first-order rules
can be interpreted in English as,

Rule 1: If there is a cosine similarity between the DE pair and MEDLINE abstracts,
the proposed ADE is true with a weight relative to the cosine similarity

Rule 2: If a drug and an effect are present in a proposed ADE and a sentence contains
both the drug and effect, the ADE is true

Rule 3: If a drug and an effect are present in a proposed ADE, and a sentence contains
both the drug and effect, and the sentence contains the pattern drug-induced
effect, the ADE is true

Rule 4: If a drug and an effect are present in a proposed ADE, and a sentence contains
both the drug and effect, and the sentence contains the pattern effect after
drug, the ADE is true

Rule 5: If a drug and an effect are present in a proposed ADE, and a sentence contains
both the drug and effect, and the sentence contains the pattern risk of effect
and drug is a participial modifier of the word risk, the ADE is true

We divide the rules into three types: (1) Text similarity based rule (Sim)
(2) Dependency path based rules that check for particular words occurring in a
dependency path between the drug and effect word (Basic) (3) Rules that check
for dependency paths as well as specific propositional dependencies in the paths
(Prep). We evaluate the contribution of these rules in the evaluation section.
Note that all rules mentioned above are considered as soft rules, and we manually
assigned weights to the rules based on the lengths of the dependency paths and
the specificity of the rule. Of course, these weights can be learned using data.
Once the MLN is constructed and weights have been assigned, we query the
MLN for the posterior probability on the adverse relation, using as evidence
the relational linguistic features from the extracted abstracts, as well as drugs,
effects, DEs and string similarities.

MLNs bring key advantages to this task. (1) We are able to specify rule
relationships in the data about dependency graphs, parse trees etc besides the
standard features used in NLP literature. This allows us to define richer MRFs
than the ones typically employed in the literature. (2) The use of the template
based formalism allows us to write as many rules as possible without worrying
about the size of the grounded network. (3) The rules can be written by “experts
i.e., the researchers who typically read these papers, without having understand
the fundamentals of graphical models when writing these rules. Hence, to sum-
marize our algorithm for identifying DEs consists of the following key steps:

– For each DE pair:
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1. Search through the list of abstracts and identify the top K relevant ab-
stracts (K=50).

2. Compute string similarity scores between the given DE and the retrieved
abstracts.

3. Run each abstract through Stanford NLP parser and select the linguistic
features relevant to the given DE.

4. Query the MLN for the probability of the DE being an adverse drug event
pair(P (DE|evidence)). During this step, the MLN engine computes the
number of times (count) each rule is satisfied for the current DE pair across
all these documents. Then it multiplies the corresponding weights with the
counts, sums these weighted counts and normalizes them to obtain the final
probability.

5. Store the probability and the DE pair to a global list

– Sort the global list and output the rankings of the DE pairs according to the
posterior probability.

This DE pairs order the different drug event pairs based on their likelihood of
being an adverse event.

3.2. Bringing Expert and Data Together - Refined MLNs

As mentioned earlier, we rely on the expert to write the rules and we simply
“soften” the rules by assigning the weights. While reasonable, there is a burden
on the expert to list all the rules that he/she uses in identifying the ADE. We
now propose to relax this requirement. The key idea is that the expert writes as
much rules as possible and the system discovers more rules that rely on data to
complement the contribution of the expert. To achieve this, we require a learning
algorithm to revise the expert’s theory as needed. We use a non-parametric MLN
learning algorithm based on functional-gradient boosting [33] as this method has
been proven to be effective for complex data.

Functional-Gradient Boosting (FGB) is an iterative procedure where the mis-
takes committed in the previous step are “fixed” in the next step. For every pos-
itive example (i.e., a true ADE), indicator value (say Ii for the current ADE i) is
set to 1 else it is set to 0. Now, the probability of every ADE being a true ADE
(i.e., P (ADEi = 1) = Pi for the current ADE i) is computed given the current
model. The difference between the indicator value and the computed probability
(i.e., Ii−Pi) is computed for each ADE and this term becomes the weight of the
ADE. We refer to the prior work [34] for details of the derivation.

Intuitively, the weight reflects the error made by the current model for each
example. If the example is a positive ADE, then the model should predict this
as positive with a probability of 1. The difference between 1 and the current
predicted probability is the magnitude of the error and becomes its weight. If
the example is a negative example, the model should predict this as positive with
probability 0 and the difference (negative number) is the magnitude of the error
of the negative examples. Hence, the positive example weights are always ≥ 0 and
negative example weights are always ≤ 0. Once the weights of the examples are
set, this method learns more clauses that focus on the higher weighted examples
i.e., examples that have higher errors in the previous step. Then these clauses
are added to the earlier set of clauses, new predictions are made, new weights
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Fig. 5. Flowchart of the refinement approach. First the rules of the expert are evaluated on the
training set to identify potential errors. These errors are then fixed using an ensemble method
that learns from textual data.

are computed and the process is repeated. Thus, this method simply pushes
all positive examples towards probability of 1 and negatives towards 0 at each
iteration.

So the next question is: how can we employ this iterative procedure to improve
our expert designed MLN? We essentially make predictions using the current
MLN that the expert provides. These predictions are used to compute the weights
of the different ADEs at iteration 0. Then functional gradient boosting is applied
as described above to learn more clauses in the next few iterations. We run the
boosting algorithm for 5 more time steps since the initial MLN (as we show in
the next section) exhibits quite reasonable performance. The hypothesis is that
further refining the MLN (i.e., by adding more weighted clauses) can result in
a more robust model that can improve upon the errors of the human expert.
Note that this step requires learning as against our earlier step which only used
the MLN for reasoning about every ADE. Subsequently, as we describe later,
we need more examples than the original approach for improving the expert
specified MLN. As with the earlier case, given a set of instantiations, this MLN
is grounded to an MRF and then is used for ADE detection.

We call this approach as refinement of MLNs and present results for this
approach in the second half of the next section.

4. Results

In this section, we present the results of empirically validating our proposed
approaches by evaluating the proposed adverse drug events (ADEs). We aim to
explicitly answer the following questions:

Q1: Is the use of expert MLNs necessary? Will string similarities suffice for medical
abstracts?

Q2: Does the use of data improve the expert’s knowledge?
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4.1. Evaluation of the basic approach

We evaluate our approach on the OMOP ground truth that can be obtained
at OMOPs website 6 . OMOP provided 9 ADE pairs, which are composed of
widely-used drug classes and health outcomes of interest (HOIs). We referred to
these HOIs as effects in our earlier discussion. These ADE pairs were classified
by OMOP as positive risks. OMOP also provided 44 negative control ADE pairs.
When evaluating the algorithm, we simply queried for the probability that the
given HOI is actually an ADE of the given drug. While plotting the area under
the curve of the ROC curve (AUCROC), we used the ground truth values.

For each ADE, we extracted 50 MEDLINE abstracts by querying PubMed7.
Our experiments showed that when considering different number of documents
- 10, 25, 50, 75, 100, the results improved till 50 documents. Beyond 50, there
were no significant improvements. From these abstracts, we identified the sen-
tences that contain both the drug class and the HOI, resulting in a total of 2140
sentences. We ran these sentences through the Stanford NLP toolkit to create re-
lational linguistic features lexical, syntactic and semantic features, which were
used as evidence. We also stored the drug classes and HOIs, as well as their
relationships with ADE pairs, to be used as evidence when querying the MLN.

We compared the performance of different MLN rule types in this domain.
We compared five different set of MLN rules to evaluate the importance of each
rule type. In the first setting, we used the full relation extraction knowledge to
evaluate the proposed ADEs (full MLN). In the second setting, we only used
the string similarity rules (Sim). In the third setting, we used just the basic
dependency rules to evaluate their contribution (Basic). In the fourth setting,
we used the full extraction knowledge except the string similarities (i.e. Basic +
Prep). In the fifth setting, we used just the basic dependencies with similarity
rules to evaluate the importance of prepositional features (Sim + Basic). Since
the prepositional rules inherently depend on the basic dependency rules, we do
not evaluate on using prepositional rules without the dependency rules.

We use Receiver Operating Characteristic (ROC) and Precision-Recall (PR)
curves to perform performance evaluation. In all settings, we performed ten runs,
and averaged the area under the ROC curve (AUC ROC) and PR curve (AUC
PR). Since we employ an approximate inference technique for obtaining the
distribution over the drug condition pairs, we repeat the experiment multiple
times.

As shown in Table 2, using all the rules in the MLN performs the best with
AUC ROC of 0.83 and AUC PR of 0.68. It can be noted that adding the similarity
metrics to the MLN (Basic+Prep) is not improving the performance significantly.
This shows that our method is capable of going beyond simple mentions of the
drug, condition pairs in the text. Just using the similarity rules also performs
reasonably well as it removes all the negative ADEs that are never even men-
tioned together. As can be seen, the most effective method is the one that uses
all the different clauses and the similarity rules as well and has statistically sig-
nificant difference in the area under PR curves. The PR curves are considered to
be a conservative estimate over ROC curves and hence are considered as more

6 http://omop.fnih.org/sites/default/files/ground%20truth.pdf
7 If there are less than 50 abstracts for a particular ADE pair, we use only the returned set of
documents
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Rule Type AUC ROC AUC PR

Mean Variance Mean Variance

Sim 0.69 0.0020 0.47 0.0073
Basic 0.73 0.0010 0.49 0.0010
Sim + Basic 0.80 0.0017 0.57 0.0013
Basic + Prep 0.83 0.0006 0.68 0.0008
Full MLN 0.83 0.0005 0.68 0.0010

Table 2. AUC ROC and AUC PR values for five MLNs averaged over ten runs. For each run,
we used 50 abstracts for each drug condition pair.

[h]

Fig. 6. Sample Precision-Recall curves. We compare the results between SIM(String Similarity)
and with the expert designed MLN.

rigorous estimators. Under this estimation, the use of the entire MLN yields far
superior results than any other combination.

We present two sample precision-recall curves from two of the runs in Figure
6. The dashed line represents the use of only similarity measures while the other
line is the full MLN. The shapes of the curves are very similar in most of the
runs. The key observation is that the use of the entire MLN helps to identify the
more complex negatives. For instance, if a drug condition pair is mentioned in a
sentence that uses complex word formations to explain the negative correlation
between them, simple similarity measures will not suffice while the full MLN can
possibly identify this as negatives. We discuss this in greater detail in the next
section.

We can answer Q1 affirmatively that the use of expert’s knowledge that en-
codes MRFs as MLNs improves upon the use of simple string similarity metrics.

In addition, we also performed another experiment to understand the impor-
tance of the number of articles. The key question that we aimed to understand
was: do a small number of strongly relevant articles exhibit higher performance
or is their support further reinforced by a few more weakly supportive docu-
ments. To this we extracted 20, 30, 50 and 100 articles for each ADE pair. We
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Num of Abstracts AUCROC AUCPR

20 0.73 ± 0.001 0.43 ± 0.001
30 0.79 ± 0.001 0.48 ± 0.001
50 0.83 ± 0.00 0.68 ± 0.001
100 0.75 ± 0.00 0.29 ± 0.001

Table 3. AUC ROC and AUC PR values for different number of abstracts across 10 runs.

ensured that the 20 documents is a subset of the 30 documents which is a subset
of the 50 which in turn is a subset of 100. We performed 10 different runs and
averaged the results over these 10 runs. As can be seen, the method exhibits the
best performance using 50 documents which appears to be a sweet spot for the
number of articles. Using 100 documents introduces more noise and hence the
performance decreases drastically. Using lower number of documents do not pro-
vide sufficient evidence to obtain a useful performance. Hence, we have chosen
50 documents for evaluation.

It must be mentioned that since we are simply performing inference using
the documents, our relation extraction method is quite effective. When using
the OMOP ADE definitions and 50 documents per ADE-pair, on a quad-core
machine, the inference process was completed in under 30 minutes. This is be-
cause of the fact that the rules are essentially horn clauses (of the form if then)
and the fact that the if part is observed, probabilistic inference is efficient.

4.2. Evaluation of the refinement approach

Note that the previous experiment evaluated whether the MLN was useful in
identifying OMOP specified ADEs from text. While the results showed improve-
ment over standard string based methods, they can still be improved. As men-
tioned earlier, we used refinement of MLNs to improve upon the MLN created
earlier. A key issue is that since we are learning, we require more examples than
the 9 positive ADE pairs from OMOP data set. To this effect, we used 30 more
ADE pairs from literature (PubMed) as positive examples. 60 negative examples
were created randomly using these 30 drugs and event pairs. These were then
used as the training set along with the 9 OMOP ADEs as input to the refinement
algorithm and performed 5-fold cross validation. It must be mentioned that the
2011-2012 version of OMOP is much more restricted than the original data-set
and has only 4 categories of drugs. It did not provide any more information than
what we have already, i.e., there is no statistical significance in adding these
definitions to our enhanced data set. When refining, we learn 10 trees for the
refinement. Using beyond 10 trees did not significantly improve the results and
we restricted ourselves to 10 trees.

Table 5 lists all the positive cases that we have considered in the current
work. We constructed the negative controls from the positives by considering all
possible drug-disease combinations and removing the positive pairs from that list
of combinations. This is called closed-world assumption, which means whatever
that is not observed is false. This is a standard assumption in many machine
learning/Artificial Intelligence algorithms and we employ the same assumption
here.

The results are presented in Figure 7 using AUC-ROC and AUC-PR values
for the two algorithms - refined MLN and the original MLN. As can be seen from
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Fig. 7. Results of using the refinement algorithm for MLNs on 39 ADE pairs using 5-fold cross
validation.

[h]

Drug Adverse event

ADE Inhibitor Angioedema
Amphotericin B Acute Renal Failure
Anaesthesia Headache
Antibiotic Acute Liver Failure
Antibiotic Deafness
Antidepressant Erectile Dysfunction
Antiepileptic Aplastic Anemia
Antihistamine Drowsiness
Antipsychotic Myocardial Infarction
Antipsychotic Diabetes
Aspirin Intenstine Bleeding
Benzodiazepine Hip Fracture
Benzodiazepine Seizures
Bisphosphonate Upper GI Ulcer
Chemotherapy Anemia
Chemotherapy Hairloss
Contraceptive Melasma
Contraceptive Thrombosis
Corticosteroid Glaucoma
Corticosteroid Mania
Ephedrine Hypertension
Fluoxetine Suicide
Interferon Depression
Interferon Hepatic Injury
Metformin Lactic Acidosis
Methylphenidate Insomnia
Metoclopramide Tardive Dyskinesia
Misoprostol Uterine Hemorrhage
Orlistat Diarrhea
Paracetamol Liver Damage
Propofol Death
Sildenafil Heart Attack
Sildenafil Priapism
Statins Rhabdomyolysis
Stavudine Lactic Acidosis
Tricyclic Antidepressant Acute Myocardial Infarction
Vaccination Fever
Warfarin Bleeding

Table 4. List of all the positive ADE pairs.
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Category Adverse drug event Probability

Positive OMOP ADE pairs
ACE Inhibitor causes Angioedema 1.000
Benzodiazepines cause Hip Fracture 0.997
Amphotericin B causes Acute Renal Failure 0.986

Negative OMOP ADE pairs
ACE Inhibitor causes Aplastic Anemia 0.624
Typical Antipsychotic causes Upper GI Ulcer 0.626
Warfarin causes Aplastic Anemia 0.617

Negative OMOP ADE pairs Bisphosphonates cause Acute Renal Failure 0.998
but positive NLP ADE pairs Antibiotics cause Bleeding 0.991

Warfarin causes Acute Renal Failure 0.965

Table 5. Examples of ADE pairs.

the figure, the use of data on top of the expert knowledge provides significantly
better results on the cross-validated ADE pairs. The improvement in PR is sig-
nificant (around 50% with the PR). This initially answers Q2 in that data can
help improve upon the expert knowledge. We employ AUC-PR for preliminary
analysis as it has been shown to be a more conservative estimate of the learn-
ing performance compared to AUC-ROC [35]. Further experimental evidence is
necessary and this is an important direction that we will pursue in the future.

5. Discussion

The results on OMOP data show that the system performs significantly better
than chance, and compares very well with systems designed to extract ADE in-
formation from EHRs (for instance, see Ryan et al. [14]). While string similarities
can be used to remove most of the negative ADEs, the use of text patterns and
semantic understanding improves the accuracy further.

When considering string similarity only, we observed that several false posi-
tive ADEs have high string similarities with literature found on the web. Several
of these are even higher than similarities of positive ADEs. Note that the string
similarities are simply computing the frequencies that the pair has been men-
tioned. In some cases, while the number of times the given DE pair is mentioned
could be high, these were essentially negative ADE mentions. The similarity
metric ignores phrases such as negative, not an effect, no association, etc. Using
text patterns on the other hand, we were able to make a better evaluation of
the proposed ADEs since they consider the type of the mention as positive or
negative, resulting in a performance improvement.

In Table 5, we show some examples of ADE pairs found in the MLN setting in
three categories: true positives, i.e., OMOP pairs that we also found to be positive
(where the probability of the event being an ADE is high), true negatives, i.e.,
negative OMOP pairs that we found to be negative (where the probability of the
event being an ADE is low), and false negatives, negative OMOP pairs that we
found to be positive (where the probability of the event being an ADE is high).

As expected, some of our results agree with the OMOP ground truth (the
top two sets of rows in the table). Note that some of our results have no perfect
agreement with OMOP ground truth. This means that some of the negative
control ADEs given by OMOP are actually found to be positive by our method.
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This disagreement reveals some probable directions of investigation for OMOPs
ground truth. For instance, consider the ADE

Bisphosphonate causes Acute Renal Failure.

This ADE is classified as negative control by OMOPs ground truth. However,
it received a high score in our method. When looking closely at the sentences
related to this ADE, we found that there is text to support the fact that the
ADE is a positive risk, which may contradict OMOPs ground truth. An example
sentence that we found from PubMed article (PMID 11887832) is:

Bisphosphonates have several important toxicities: acute renal
failure, worsening renal function, reduced bone mineralization,

and osteomalacia.

This may happen because of several reasons, such as OMOPs high standard
of evidence for ADEs or discoveries occurring after OMOP initiation. Results
like this show that our method can be used for ADE evaluation of the ground
truth. More importantly, given that the literature is vast, we can find with less
human effort ADEs that are already known or have been discovered previously.

A current limitation of our approach is that although it finds evidence for
ADEs that were not in the OMOP ground truth (such as a link between bispho-
sphonates and acute renal failure and a link between antibiotics and increased
risk of bleeding with warfarin use) it also falsely interprets some other relation-
ships. For example, it falsely assigns hip fracture as a warfarin ADE on the basis
of sentences such as this one from a PubMed Central article (PMC3195383)

There is a need for a national policy for reversing warfarin
anticoagulation in patients with hip fractures requiring surgery.

Another error occurs when our approach falsely interprets evidence for a
protective effect as evidence for an ADE, interpreting PubMed Central article
with PMID 11826008 as providing evidence that amphotericin B might cause
aplastic anemia. Of the ten highest-ranked false ADEs by our method from
OMOPs ground truth this is the lowest ranked.

We describe a case of primary cutaneous mucormycosis (zygomycosis)
in a patient with idiopathic aplastic anemia which responded to
surgical debridement and therapy with liposomal amphotericin B.

Other disagreements with OMOP ground truth among the top ten were actual
positive evidence for ADEs but with weak evidence in the form of single cases
or animal studies.

Our primary goal in this work is to develop a nimble, general tool for evalu-
ating a wide variety of ADE discovery methods that might be based on search
engine queries, social network data, or observational medical data such as health
insurance claims or electronic health records. It is possible that the best ap-
proach will be an ensemble of all of these, and might itself include our scientific
literature-based approach as well. Nevertheless, we see the primary role of this
literature-based approach as being for evaluation, since we expect results con-
firmed and published in the scientific literature to necessarily lag behind the
initial signals of an ADE likely to appear in EHRs and claims data, in internet
searches, and in social media.
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6. Conclusion

We present a novel approach for extracting adverse drug events (ADEs), a ma-
jor social concern that accounts for 770 000 injuries and deaths each year [36],
from text. Our method exploits publicly available biomedical literature to esti-
mate the probability that a drug may cause a certain event. We do so by using
state-of-the-art text mining and multi-relational machine learning techniques.
We evaluate our performance on the reference OMOP ground truth, find agree-
ment better than state-of-the-art ADE discovery methods, and find that in some
of the cases of disagreement our method appears to be correct. Nevertheless,
we find that in an equal number of cases our method is incorrect. In the re-
maining cases of disagreement our method has only weak evidence in support
of its findings. We expect these weaknesses in our method can be addressed in
part by further improvements in its natural language processing and in part by
performing parameter learning in its Markov logic network.
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Predicates

adverse(rule)
rule(rule)
dpBetweenDrugAndEffect(rule)
dpH(rule, wo, subwostr, wordType)
dpRCount(rule, dp1, n, n)
dpWhileReceivingCount(rule, dp2, n, n)
dpWhileTakingCount(rule, dp3, n, n)
dpDirectCause(rule, dp4, dp44, n, n)
dpDirectIncrease(rule, dp5, dp55, n, n)
dpRisk(rule, dp6, dp66, n, n)
dpRiskAssociated(rule, dp7, dp77, n, n)
dpAssociated(rule, dp8, dp88, n, n)
dpConsequence(rule, dp9, n, n)
dpSideWithEffect(rule, dp11, dp11, n, n)
dpProduce(rule, dp12, dp12, n, n)
dpPromote(rule, dp12, dp12, n, n)
adverseC(rule, n, n)
cosineSimilarityWeight(rule, float wgt)

Table 6. List of predicates in MLN

7. Appendix
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Rules

// effect after drug
dpRCount(r, dp, up, down), [contains(dp, ”PREP AFTER”) OR
contains(dp, ”PREP FOLLOWING”)] =>adverseC(r, up, down).

// effect on xxxx following drug
dpRCount(r, dp, up, down), [contains(dp, ”PREP ON”) AND
contains(dp, ”PREP FOLLOWING”)] =>adverseC(r, up, down).

// effect prep while <receiving—taking>drug
dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC WHILE”)]
=>adverseC(r, up, down).
dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC WHILE”)]
=>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect
dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND
contains(dp2, ”DOBJ”)] =>adverseC(r, up, down).
dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND
contains(dp2, ”PREP OF”)] =>adverseC(r, up, down).

// risk prep of effect partmod drug
dpRisk(r, dp1, dp2, up, down), [contains(dp1, ”PREP OF”) AND
contains(dp2, ”PARTMOD”)] =>adverseC(r, up, down).

// risk <prep of—prep for>effect associated prep with drug
dpRiskAssociated(r, dp1, dp2, up, down), [(contains(dp1, ”PREP OF”) OR
contains(dp1, ”PREP FOR”)) AND contains(dp2, ”PREP WITH”)]
=>adverseC(r, up, down).

// drug nsubjpass associated prep with effect
dpAssociated(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJPASS”) AND
contains(dp2, ”PREP WITH”)] =>adverseC(r, up, down).

// effect consequence prep of drug
dpConsequence(r, dp, up, down), [contains(dp, ”PREP OF”)]
=>adverseC(r, up, down).

//effect side effect of drug
dpSideWithEffect(r, dp1, dp2, up, down), [contains(dp1, ”PREP OF”)]
=>adverseC(r, up, down).

//drug promotes effect
dpPromote(r, dp1, dp2, up, down) =>adverseC(r, up, down).

//drug produced effect
dpProduce(r, dp1, dp2, up, down) =>adverseC(r, up, down).

Table 7. Rules to deduce adverseC predicates, which subsequently influence the posterior
probability of the adverse predicate.
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Weight Rules

wgt cosineSimilarityWeight(r, wgt) =>adverse(r)

1 dpBetweenDrugAndEffect(r) =>adverse(r)

3
dpH(r, wo, str, str1), [(str = ”induced” OR str = ”associated”)
AND (contains(str1, ”AMOD”))] =>adverse(r)

3 adverseC(r, up, down), [up+down = 1] =>adverse(r)

2.5 adverseC(r, up, down), [up+down = 2] =>adverse(r)

2 adverseC(r, up, down), [up+down = 3] =>adverse(r)

1.5 adverseC(r, up, down), [up+down >= 4] =>adverse(r)

-0.5 !adverse(r)

Table 8. Final MLN Rules


