
AutoMode: Relational Learning
With Less Black Magic

Jose Picado, Sudhanshu Pathak, Arash Termehchy, Alan Fern

School of EECS, Oregon State University
{picadolj,pathaks,termehca,alan.fern}@oregonstate.edu

Abstract—Relational learning algorithms learn the Datalog
definition of novel relations in terms of existing relations in
the database. In order to effectively use these algorithms, users
must constraint the space of candidate definitions by specifying a
language bias. Unfortunately, specifying the language bias takes a
great deal of time and effort, as it is done via trial and error and
is guided by the expert’s intuitions. We demonstrate AutoMode,
a system that leverages information in the schema and content
of the database to automatically induce the language bias used
by popular relational learning algorithms.

I. INTRODUCTION

Learning novel concepts or relations over relational

databases has attracted a great deal of attention due to its

applications in machine learning and data management [3].

Consider the UW-CSE database (alchemy.cs.washington.
edu/data/uw-cse), which contains information about a com-

puter science department and its schema fragments are shown

in Table I. One may want to predict the new relation ad-
visedBy(stud,prof), which indicates that the student stud is

advised by professor prof. Given the UW-CSE database and

positive and negative training examples of the advisedBy
relation, relational learning algorithms attempt to find a def-

inition of this relation in terms of the existing relations in

the database [3], [4]. Learned definitions are usually first-

order logic formulas and often restricted to Datalog programs.

For example, a relational learning algorithm may learn the

following Datalog program for the advisedBy relation:

advisedBy(x, y) ← publication(z, x), publication(z, y),
which indicates that a student is advised by a professor if

they have been co-authors of a publication.

Relational learning algorithms can exploit the relational

structure of the data, making them useful for domains where

structure of data is important. Moreover, their learned def-

initions are interpretable and easy to understand. Relational

learning has several applications in database management and

machine learning, such as learning database queries and the

structure of statistical relational models [3].

As the space of possible definitions (e.g. all Datalog pro-

grams) is enormous, relational learning algorithms must em-

ploy heuristics to constraint the search space. These heuristics

are generally specified through a language bias. One form

of language bias is syntactic bias, which restricts the struc-

ture and syntax of the learned Datalog programs. Relational

learning systems usually allow users to specify the syntactic

bias through statements called predicate definitions and mode

student(stud) professor(prof)
inPhase(stud,phase) hasPosition(prof,position)
courseLevel(course,level) taughtBy(course,prof,term)
ta(course,stud,term) publication(title,author)

TABLE I
SCHEMA FRAGMENTS FOR THE UW-CSE DATABASE.

Predicate definitions Mode definitions
student(T1) advisedBy(+,+)
inPhase(T1,T2) student(+)
professor(T3) inPhase(+,-)
hasPosition(T3,T4) inPhase(+,#)
publication(T5,T1) professor(+)
publication(T5,T3) hasPosition(+,-)

...

TABLE II
A SUBSET OF PREDICATE AND MODE DEFINITIONS FOR LEARNING

advisedBy RELATION.

definitions [3]. Predicate and mode definitions express several

types of restrictions on the structure of the learned Datalog

programs, such as the relations allowed to be in the Datalog

program, whether an attribute can appear as a variable or

constant, and whether two relations can join. Table II shows a

fragment of predicate and mode definitions used for learning

the advisedBy relation over the UW-CSE database. A detailed

explanation of these definitions is given in Section II. To

the best of our knowledge, all (statistical) relational learning

systems require some form of syntactic bias to restrict the

hypothesis space.

For a relational learning algorithm to be effective and

efficient, predicate and mode definitions must encode a great

deal of information about the structure of the learned Datalog

programs [3]. To set a sufficient degree of restriction, a user

should know the internals of the learning algorithm and the

schema of the input database, as well as having a relatively

clear intuition on the structure of effective Datalog programs

for the target relation. However, there may not be any user that

knows both the database concepts, such as schema, and has a

clear intuition about the target relation, particularly in specific

domains such as biology. Hence, learning a relation requires

many lengthy discussions between the database/machine learn-

ing expert and domain experts. Furthermore, the number of

predicate and mode definitions is generally large and hard

to debug and maintain. Users normally improve the initial

set of definitions via trial and error, which is a tedious and

time-consuming process. Hence, it takes a lot of time and

effort to write and maintain these definitions, particularly

for a relatively complex schema. In our conversations with

1553

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00174

relational learning experts, they have called predicate and

mode definitions the “black magic” needed to make relational

learning work and believe them to be a major reason for the

relative unpopularity of these algorithms among users.

We demonstrate AutoMode, a system that leverages the

information in the schema and content of the database to

automatically generate predicate and mode definitions. We

show that the predicate and mode definitions produced by

AutoMode deliver the same accuracy as the manually written

and tuned ones while imposing only a modest running-time

overhead over large real-world databases.

II. BACKGROUND

A. Relational Learning

An atom is a formula in the form of R(e1, . . . , en), where

R is a relation symbol. A literal is an atom, or the negation

of an atom. Each attribute in a literal is set to either a

variable or a constant, i.e., value. Variable and constants are

also called terms. A Horn clause (clause for short) is a

finite set of literals that contains exactly one positive literal.

Horn clauses are also called conjunctive queries. A Horn
definition is a set of Horn clauses with the same positive

literal. A relational learning algorithm learns a Horn definition

from input relational databases and training data. The learned

definition is called the hypothesis. The hypothesis space is the

set of all candidate Horn definitions.

Relational learning algorithms search over the hypothesis

space to find a definition that covers as many positive examples

as possible, while covering the fewest possible negative ex-

amples. Relational learning algorithms generally follow either

a top-down or a bottom-up approach. Top-down algorithms

start with an empty definition and iteratively add literals to the

definition until the definition cannot be improved. Bottom-up

algorithms first construct the most specific clause that covers

a given positive example, and then generalize this clause to

cover more positive examples.

B. Language Bias

In relational learning algorithms, language bias restricts the

structure and syntax of the generated clauses. Language bias

is specified through predicate and mode definitions [3].

Predicate definitions assign one or more types to each

attribute in a database relation. In a candidate clause, two

relations can be joined over two attributes (i.e., attributes are

assigned the same variable) only if the attributes have the

same type. For instance, in Table II, the predicate definition

student(T1) indicates that the attribute in relation student
is of type T1, and the predicate definition inPhase(T1,T2)

indicates that the first and second attributes of relation in-
Phase are of type T1 and T2, respectively. Therefore, rela-

tions student and inPhase can be joined on attributes stu-
dent[stud] and inPhase[stud]. It is possible to assign multiple

types to an attribute. For example the predicate definitions

publication(T5,T1) and publication(T5,T3) indicate

that the attribute author in relation publication belongs to both

types T1 and T3. Predicate definitions restrict the joins that can

Fig. 1. AutoMode is implemented on top of Castor.

appear in a candidate clause: two relations can be joined only

if their attributes share a type.

Mode definitions indicate whether a term in an atom should

be a new variable (i.e., existentially quantified variable), an

existing variable (i.e., appears in a previously added atom), or

a constant. They do so by assigning one or more symbols to

each attribute in a relation. Symbol + indicates that a term

must be an existing variable, except for the atom in the head

of a Horn clause. Symbol − indicates that a term can be an

existing variable or a new variable. For instance, the mode

definition inPhase(+,-) in Table II indicates that the first

term must be an existing variable and the second term can

be either an existing or a new variable. Symbol # indicates

that a term should be a constant. For instance, the mode

definition inPhase(+,#) indicates that the second term must

be a constant. Each atom in a candidate clause must satisfy at

least one mode definition.

III. AUTOMODE SYSTEM

Figure 1 shows the components of the AutoMode system.

We implement AutoMode on top of Castor [4], a bottom-up

relational learning system. AutoMode reads and extracts the

information about the schema of the underlying database from

the RDBMS. It then generates predicate and mode definitions

in a pre-processing step. Castor uses these definitions to learn

the definition of some target relation. The same predicate and

mode definitions can be used to learn different target relations.

A. Generating Predicate Definitions

Let R and S be two relation symbols in the schema of the

underlying database. Let R(e1, · · · , en) and S(o1, · · · , om) be

two atoms in a clause C. Let ei be the term in attribute R[A]
and oj be the term in attribute S[B], and let ei and oj be

assigned the same variable or constant. That is, clause C joins

R and S on A and B. Clause C is satisfiable only if these

attributes share some values in the input database. Typically,

the more frequently used joins are the ones over the attributes

that participate in inclusion dependencies (INDs), such as

foreign-key to primary-key referential constraints. AutoMode

uses INDs in the input database to find which attributes, among

all relations, share the same type. Let X and Y be sets of

attribute names in R and S, respectively. Let IR and IS be

the relations of R and S in the database. Relations IR and IS
satisfy exact IND (IND for short) R[X] ⊆ S[Y] if πX(IR) ⊆
πY (IS). If X and Y each contain only a single attribute, the

IND is a unary IND. Given IND R[X] ⊆ S[Y] in a database,

the database satisfies unary IND R[A] ⊆ S[B], where A ∈ X
and B ∈ Y . INDs are normally stored in the schema of the

1554

database. If they are not available in the schema, one can

extract them from the database content. AutoMode uses the

Binder algorithm [2] to discover INDs from the database,

shown by the Exact IND discovery box in Figure 1, and

generates all unary INDs implied by them.

We have observed that using exact INDs is not enough

for generating helpful predicate definitions. For instance, to

learn the accurate definition for relation advisedBy presented

in Section I, Castor must join relations publication, student,
and professor on attributes publication[author], student[stud],

and professor[prof]. But, the UW-CSE database does not

satisfy INDs publication[author] ⊆ student[stud] or publi-
cation[author] ⊆ professor[prof] because publication[author]
contains both students and professors. Hence, AutoMode also

uses approximate INDs to assign types to attributes. In an

approximate unary IND (R[A] ⊆ S[B], α), one has to remove

at least α fraction of the distinct values in R[A] so that the

database satisfies R[A] ⊆ S[B] [2]. Approximate INDs are

not usually maintained in schema and are discovered from

the database content. We have implemented a program to

extract approximate INDs from the database, shown by the

Approximate IND discovery box in Figure 1. We use a

relatively high error rate, 50%, for the approximate INDs to

enlarge Castor hypothesis space.

After discovering unary exact and approximate INDs, Au-

toMode runs Algorithm 1 to generate a directed graph called

type graph, which it then uses to assign types to attributes.

First, it creates a graph whose nodes are attributes in the

input schema and has an edge between each pair of attributes

that participate in an exact or approximate IND (lines 1-3).

Figure 2 shows an example of the type graph containing a

subset of the attributes in the UW-CSE schema, where edges

corresponding to exact and approximate INDs are shown by

solid and dashed lines, respectively. If there are both approx-

imate INDs (R[A] ⊆ S[B], α1) and (S[B] ⊆ R[A], α2),
AutoMode uses only the one with lower error rate. The

algorithm then assigns a new type to every node in the graph

without any outgoing edges (lines 4-5). For example, it assigns

new types T1, T3, and T5 to student[stud], professor[prof],

and publication[title], respectively, in Figure 2. If there are

cycles in the type graph, the algorithm assigns the same new

type to all nodes in each cycle (lines 6-7). Next, it propagates

the assigned type of each attribute to its neighbors in the

reverse direction of edges in the graph until no changes are

made to the graph (lines 8-11). For example, in Figure 2, the

algorithm propagates type T1 to inPhase[stud] and ta[stud]
and attribute publication[author] inherits types T1 and T3

from student[stud] and professor[prof], respectively. Because

the error rates of approximate INDs accumulate over multiple

edges in the graph, AutoMode propagates types only once over

edges that correspond to approximate INDs.

Given the resulting graph, for each relation, AutoMode

computes the Cartesian product of the types associated with

its attributes. For each tuple in this Cartesian product, it

produces a predicate definition for the relation. For in-

stance, given the type assignment in Figure 2, AutoMode

Algorithm 1: Algorithm to generate the type graph.

Input : Schema S and all unary INDs Σ.
Output: Type graph G.

1 create graph G = (V,E) where V contains a node for each
attribute in the schema and E = ∅

2 foreach IND R[A] ⊆ S[B] ∈ Σ do
3 add edge v → u to E, where v and u correspond to

attributes R[A] and S[B], respectively
4 foreach node u ∈ V without outgoing edges do
5 generate new type T and set types(u) = {T}
6 foreach cycle K ⊆ V do
7 generate new type T and set types(u) = {T} ∀u ∈ K
8 repeat
9 foreach v → u ∈ E where types(u) �= ∅ do

10 set types(v) = types(v) ∪ types(u)
11 until no changes in G
12 return G

Fig. 2. A fragment of the type graph for UW-CSE database.

generates predicate definitions publication(T5,T1) and

publication(T5,T3) for the publication relation.

B. Generating Mode Definitions

AutoMode lets every attribute of every relation be a variable.

However, it forces at least one variable in an atom to be

an existing variable, i.e., appears in previously added atoms,

to avoid generating Cartesian products in the clause. For

each attribute A in relation R, AutoMode generates a mode

definition for R where attribute A is assigned the + symbol

and all other attributes are assigned the − symbol. If the

number of distinct values in an attribute is below some given

threshold, AutoMode allows the attribute to be a constant. This

threshold is a hyper-parameter, but it has a relatively intuitive

meaning. For each relation R in the database, AutoMode

finds all attributes in R that can be constants using the

aforementioned rule. Then, it computes the power set M of

these attributes. For each non-empty set M ∈M, AutoMode

generates a new set of mode definitions where it assigns +
and − symbols as described above, except for the attributes

in M , which are assigned the # symbol.

C. Empirical Results

Our empirical results indicate that AutoMode is gener-

ally as accurate as manual tuning. We learn the relation

advisedBy(stud,prof) over the UW-CSE database, which is

described in Section I and contains 1.8K tuples, 102 pos-

itive and 204 negative examples. We also learn relation

antiHIV(comp), which indicates that a chemical compound

comp has anti-HIV activity, over the HIV database that

contains structural information about chemical compounds

(wiki.nci.nih.gov/display/NCIDTPdata). This database con-

tains 80 relations with a total of 14M tuples, 2K positive and

4K negative examples. We try three other ways of setting the

1555

Dataset Measure Baseline
Baseline Manual

AutoMode
(w/o const.) tuning

UW-CSE
F1-score 0.60 0.62 0.67 0.67

Time 47s 6.6s 11s 10.8s

HIV
F1-score - 0.80 0.83 0.84

Time >36h 20h 14.7m 32.2m

TABLE III
RESULTS OF LEARNING RELATIONS OVER UW-CSE AND HIV

DATA (H=HOURS, M=MINUTES, S=SECONDS).

language bias. Baseline assigns the same types to all attributes

and allows every attribute to be a variable or a constant. Base-
line without constants is the same as the baseline method,

except that it does not allow any attribute to be a constant.

Manual tuning uses the language bias written by an expert.

The expert had to learn the schema and go through several

trial and error phases by running the underlying learning

system and observing its results to write the predicate and

mode definitions. The pre-processing step of AutoMode to

extract INDs takes 2 seconds and 45 minutes over the UW-

CSE and HIV databases, respectively. According to Table III,

AutoMode is at least as accurate as manual tuning and

more accurate than the baseline methods. Although learning

using AutoMode takes longer than manual tuning, AutoMode

eliminates the language bias preparation phase, which requires

experts to spend hours defining and maintaining language bias.

Also, AutoMode enables non-experts to use relational learning

systems easily. We have performed experiments over other

large databases, and have found that AutoMode allows Castor

to learn accurate definitions efficiently [1].

IV. DEMONSTRATION SCENARIOS

In our demonstration, we walk the audience through the

process of using a relational learning system to learn the

definitions for the target relations over the UW-CSE, HIV,

and IMDb (imdb.com) databases, and show how AutoMode

simplifies this process. We also compare AutoMode against

other methods of setting language bias for relational learning.

End-to-end learning system: The ultimate goal of AutoMode

is to make relational learning systems easy to use. Therefore,

we show an end-to-end scenario in which AutoMode is used

along with Castor to learn the definition for a given relation.

We provide an interface, shown in Figure 3, where the au-

dience can select a database from a list of databases, e.g.,

UW-CSE, choose the tables containing positive and negative

examples for the target relation, e.g., advisedBy(stud,prof), and

initiate the learning process. The system uses AutoMode to

automatically generate predicate and mode definitions and uses

them to learn a Datalog definition for the target relation. The

system presents the Datalog definition and shows its accuracy

and the learning time.

Impact of language bias: We manually prepare the pred-

icate and mode definitions for several target concepts over

UW-CSE, HIV, and IMDb databases. The audience will be

presented with the schema of a database, e.g., UW-CSE, a

target relation over the database, e.g., advisedBy, and a set

of predicate and mode definitions for this target relation. We

demonstrate the impact of language bias by modifying the

Fig. 3. AutoMode user interface.

manually written predicate and mode definitions, running the

learning algorithm, and showing the learned definition and

its accuracy. For instance, if we remove predicate definition

publication(T5,T3) in Table II, Castor will not learn a

definition containing the publication relation where the author

is a professor, resulting in a less accurate definition. If time

permits, the audience can also modify the predicate and mode

definitions and explore its impact on learning.

How AutoMode works: We demonstrate how AutoMode gen-

erates predicate and mode definitions. We walk the audience

through the discovery of the exact and approximate INDs over

the database of their choice. Then, we present the audience

with the type graph derived from this set of INDs as explained

in Section III-A. Finally, we show the predicate and mode

definitions generated from the type graph. To make these

definitions easy to follow, we provide a visual representation of

them in the form of a graph in which nodes represent attributes

and there is an edge between two nodes if they share the same

type, i.e., they can be joined.

Comparing AutoMode with other methods of setting lan-
guage bias: We provide an interface, shown in Figure 3, where

the audience can select from the four methods of setting the

language bias described in Section III-C over the database of

their choice from the list of available databases. After selecting

a method, the system shows the predicate and mode definitions

generated by this method. Then, the audience can run Castor

using the selected method and observe the learned definition,

its accuracy, and the learning time.

V. ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

under grant IIS-1423238 and by AFRL Contract No. FA8750-

16-C-0044 under the DARPA BRASS program.

REFERENCES

[1] AutoMode: Technical Report. https://arxiv.org/abs/1710.01420, 2017.
[2] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: A

survey. The VLDB Journal, 24(4), 2015.
[3] L. De Raedt. Logical and Relational Learning. Springer Publishing

Company, Incorporated, 1st edition, 2010.
[4] J. Picado, A. Termehchy, A. Fern, and P. Ataei. Schema Independent

Relational Learning. In SIGMOD, 2017.

1556

