
Learning Efficiently Over Heterogeneous Databases:
Sampling and Constraints to the Rescue

Jose Picado

Oregon State University

picadolj@oregonstate.edu

Arash Termehchy

Oregon State University

termehca@oregonstate.edu

Sudhanshu Pathak

Oregon State University

pathaks@oregonstate.edu

ABSTRACT
Given a relational database and training examples for a target rela-

tion, relational learning algorithms learn a definition for the target

relation in terms of the existing relations in the database. We pro-

pose a relational learning system called CastorX, which learns effi-

ciently across multiple heterogeneous databases. The user specifies

connections and relationships between different databases using a

set of declarative constraints called matching dependencies (MDs).

Each MD connects tuples across multiple databases that are related

and can meaningfully join but the values of their join attributes

may not be equal due to the different representations of these values
in different databases. CastorX leverages these constraints during

learning to find the information relevant to the training data and

target definition across multiple databases. Since each tuple in a

database may be connected to too many tuples in other databases

according to an MD, the learning process will become very slow.

Hence, CastorX uses sampling techniques to learn efficiently and

output accurate definitions.

ACM Reference Format:
Jose Picado, Arash Termehchy, and Sudhanshu Pathak. 2018. Learning

Efficiently Over Heterogeneous Databases: Sampling and Constraints to

the Rescue. In DEEM’18: International Workshop on Data Management for
End-to-End Machine Learning, June 15, 2018, Houston, TX, USA. ACM, New

York, NY, USA, 4 pages. https://doi.org/10.1145/3209889.3209899

1 INTRODUCTION
Users often need to discover interesting and novel concepts over

domains with multiple entities and relations. For instance, consider

the IMDb database (imdb.com), which contains information about

movies and people who make them, and whose schema fragments

are shown in Table 1. Given this database, a user may want to

find the definition for the new relation highGrossing(title), which
indicates that the movie with title title is high grossing. Typical

statistical learning methods generally assume that the (training)

data is independently and identically distributed. This assumption

often holds in the domains with a single entity or relation but

generally violated in datasets with multiple relations due to the

correlation between different relations in the database [2].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DEEM’18, June 15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5828-6/18/06. . . $15.00

https://doi.org/10.1145/3209889.3209899

movies(id,title,year) movies2releasedate(id,month,year)

movies2genres(id,name) genres(id,name)

movies2directors(id,directorId) director(id,name)

Table 1: Schema fragments for the IMDb database.

highBudgetMovies(title)

movies2totalGross(title,gross)

Table 2: Schema fragments for Box Office Mojo.

Given a relational database and training examples for a new

target concept or relation, (statistical) relational learning algorithms

attempt to learn an (approximate) definition of the target relation

in terms of existing relations in the database [2]. Definitions are

usually restricted to Datalog programs for the sake of efficiency. For

instance, the user who wants to learn a definition for the new target

relation highGrossing using the IMDb database may provide a set of

high grossing movies as positive examples and a set of low grossing

movies as negative examples to a relational learning algorithm.

Given the IMDb database and these examples, the algorithm may

learn the following definition:

highGrossing(x) ← movies(y,x , z),movies2genres(y, ‘comedy’),

movies2releasedate(y, ‘June’,u),
which indicates that high grossing movies are often released in

June and their genre is comedy. Since relational learning algorithms

leverage the structure of the database directly to learn new relations

and their results are interpretable, they have been widely used in

database management and machine learning applications, such as

query learning, entity resolution, and information extraction [2].

The information in a domain is usually spread across several

databases. For example, IMDb does not contain the information

about the budget or total grossing of the movies. Using this in-

formation may help the user to learn a more accurate definition

for the highGrossing relation as high grossing movies may have

high budgets. This information can be found from another database

Box Office Mojo (BOM) (boxofficemojo.com), whose schema frag-

ments are shown in Table 2. Currently, users have to first (manually)

integrate the IMDb and BOM databases, and then learn over the in-

tegrated database. It is well-established that integrating databases is

an extremely difficult, time-consuming, and labor-intensive process.

For instance, the titles of the same movie in IMDb and BOM have

different formats and there is no simple rule to match titles of the

same movie. Thus, one has to write a relatively complex program

to match movies in IMDb and BOM databases. More importantly,

the user does not always need to integrate databases to learn a

definition for a target relation. For instance, consider a user who

wants to learn the definition of a target relation collaborators(dir1,
dir2), which indicates that directors whose names are dir1 and dir2
have co-directed a movie. This user can learn an effective definition

by using only the data in the IMDb database.

https://doi.org/10.1145/3209889.3209899
https://doi.org/10.1145/3209889.3209899

DEEM’18, June 15, 2018, Houston, TX, USA Jose Picado, Arash Termehchy, and Sudhanshu Pathak

In this paper, we describe our progress in building a relational

learning system called CastorX, which learns a target definition over

multiple heterogeneous databases. Instead of integrating databases

as a preprocessing step, we follow a different approach. Users

can guide CastorX on how to join and match tuples in different

databases using a set of declarative constraints called matching de-

pendencies (MDs) [3]. MDs provide information about the attributes

across multiple databases that are related and can meaningfully

join but their values may not match exactly. For example, there is

an MD between the highBudgetMovies[title] attribute in BOM and

the movies[title] attribute in IMDb. One can use this MD to find

the tuples in BOM that contain the information about the budgets

of movies in IMDb. CastorX leverages these constraints to learn a

definition for the target relation. Generally, a tuple in one database

may (approximately) match a lot of tuples in another relation in the

same database or another database. It would be extremely expensive

to explore all matched tuples. CastorX uses sampling methods to

learn effective definitions over multiple large databases efficiently.

CastorX presents the final definitions to the user as if the learning

has been performed over an integrated database.

2 BACKGROUND
2.1 Relational Learning
An atom is a formula in the form of R (u1, . . . , un), where R is a

relation symbol. Each attribute in an atom is set to either a variable

or a constant, i.e., value. Variable and constants are also called terms.
A ground atom is an atom that only contains constants. A literal is
an atom, or the negation of an atom. A Horn clause (clause for short)
is a finite set of literals that contains exactly one positive literal.

Horn clauses are also called Datalog rules (without negation) or

conjunctive queries. A Horn definition is a set of Horn clauses with

the same positive literal, i.e., Datalog program.

Relational learning algorithms learn first-order logic definitions

from an input relational database and training examples. Training

examples E are tuples of a single target relation, and express positive

(E+) or negative (E−) examples. The learned definition is called the

hypothesis, which is usually restricted to Horn definitions. The

hypothesis space is the set of all possible Horn definitions that the

algorithm can explore. ClauseC covers an example e if I ∧C entails

e , denoted by I ∧ C |= e , i.e., if I and C are true, then e is true.

Definition H covers an example e if any of its clauses covers e .
CastorX’s learning algorithm is depicted in Algorithm 1. It con-

structs one clause at a time using the LearnClause function. The
LearnClause function follows a bottom-up approach, which consists

of two steps: 1) build the most specific clause in the hypothesis

space that covers a given positive example, called a bottom-clause,
and 2) generalize the bottom-clause to cover as most positive and

as fewest negative examples as possible.

2.2 Matching Dependencies
Amatching dependency (MD) [3] is a sentence of the form R1[A1] ≈

R2[A2] → R1[B1] ⇌ R2[B2], where ≈ is a similarity operator.

The exact implementation of the similarity operator depends on

the underlying domains of attributes. For example, given that the

domain of attributes is a set of strings, one may use string similarity

functions, such as edit distance. R1[B1] ⇌ R2[B2] indicate that

Algorithm 1: CastorX’s learning algorithm.

Input :Database instance I , examples E
Output :Horn definition H

1 H = {},U = E+
2 whileU is not empty do
3 C = LearnClause(I ,U ,E−)

4 if C satisfies minimum criterion then
5 H = H ∪C

6 U = U − {e ∈ U |H ∧ I |= e}

7 return H

one can exchange the values of R1[B1] and R2[B2] in the database.

Intuitively, the aforementioned MD says that given the values of

R1[A1] and R2[A2] are sufficiently similar, the values of R1[B1] and
R2[B2] are essentially different representations of the same value.

3 PROBLEM DEFINITION
We extend relational learning to learn over multiple databases.

Given a set of databases I1, . . . , Im with schemas S1, . . . , Sm , a set

of MDs, and training examples E for the target relation T , we wish
to learn a Datalog definition for T in terms of the relations in

schemas S1, . . . , Sm . The input set of MDs are defined over relations

in S1, . . . , Sm and express the relationships between these schemas.

In this paper, we focus on simple matching dependencies in the

form of Ri [A] ≈ Rj [B] → Ri [A] ⇌ Rj [B], where Ri and Rj are
relations in Si and Sj , 1 ≤ i, j ≤ m, respectively, and A and B are

attributes in Ri and Rj , respectively.

4 FINDING RELEVANT INFORMATION
4.1 Bottom-clause Construction
A bottom-clauseCe associated with an example e is the most specific

clause in the hypothesis space that covers e . Let I1, . . . , Im be the

input databases. The bottom-clause construction algorithm consists

of two phases. First, CastorX finds all the information in I1, . . . , Im
relevant to e . The information relevant to example e are sets of

tuples Ie1 ⊆ I1, . . . , Iem ⊆ Im that are connected to e . A tuple t is
connected to e if we can reach t using a sequence of (similarity)

search operations, starting from e . Next, given the information

relevant to e , CastorX creates the bottom-clause Ce .
To find the information relevant to e , CastorX uses the following

algorithm. Without loss of generality, we assume that all attributes

have the same domain. CastorX maintains a set M that contains

all seen constants. Let e = T (a1, . . . ,an) be a training example.

First, CastorX adds a1, . . . ,an to M . These constants are values

that appear in tuples in I1, . . . Im . Then, for each Ij ∈ {I1, . . . , Im },
CastorX searches all tuples in Ij that contain at least one constant

in M and adds them to Ie j . To search across multiple databases,

CastorX uses MDs that provide the relationship between databases.

IfM contains constants in some relation Ri ∈ Ii and given an MD

Ri [A] ≈ Rj [B]→ Ri [A]⇌ Rj [B], where Rj ∈ Ij , CastorX performs

a similarity search over Rj [B] to find relevant tuples in Rj . For each
new tuple in Ie j , the algorithm extracts new constants and adds

them toM . The algorithm repeats this process for a fixed number

of iterations d .

Learning Efficiently Over Heterogeneous Databases:
Sampling and Constraints to the Rescue DEEM’18, June 15, 2018, Houston, TX, USA

movies(m1,Superbad (2007),2007) movies2genres(m1,comedy)

movies(m2,Zoolander (2001),2001) movies2genres(m2,comedy)

movies(m3,Orphanage (2007),2007) movies2genres(m3,drama)

movies2countries(m1,c1) countries(c1,USA)

movies2countries(m2,c1) countries(c2,Spain)

movies2countries(m3,c2) englishMovies(m1)

movies2releasedate(m1,August,2007) englishMovies(m2)

movies2releasedate(m2,September,2001) spanishMovies(m3)

Table 3: Example database.
To create the bottom-clause Ce from Ie1, . . . Iem , CastorX first

maps each constant inM to a new variable. It creates the head of

the clause by creating a literal for e and replacing the constants

in e with their assigned variables. Then, for each tuple t ∈ Ie j ,
Ie j ∈ {Ie1, . . . , Iem }, CastorX creates a literal and adds it to the

body of the clause, replacing each constant in t with its assigned

variable. If there is an input MD Ri [A] ≈ Rj [B]→ Ri [A]⇌ Rj [B],
where Rj ∈ Ij , and there is a tuple t ′ ∈ Ri , then Ie j may contain

a tuple t obtained through similarity search. In this case, we add

a similarity literal simRi [A],Rj [B] (v1,v2), where v1 and v2 are the

variables assigned to t ′[A] and t[B], respectively.

Example 4.1. Given example highGrossing(Superbad), the data-
base in Table 3, and MD ϕ : highGrossing[title] ≈ movies[title] →
highGrossing[title] ⇌ movies[title], CastorX finds the relevant tu-
ples movies(m1, Superbad (2007), 2007), movies2genres(m1, comedy),
movies2countries(m1, c1), englishMovies(m1), movies2releasedate(m1,
August, 2007), and countries(c1, USA). Given these tuples, CastorX
creates the following bottom-clause:
highGrossing(x) ← movies(y, t , z), sim(x , t),movies2countries(y,v),

countries(v, ‘USA’),movies2genres(y, ‘comedy’),

englishMovies(y),movies2releasedate(y, ‘August’,u).

4.2 Sampling in Bottom-clause Construction
The tuple sets Ie1, . . . , Iem created in bottom-clause construction

may be large if many tuples in I1 . . . , Im are relevant to e . Thus,
bottom-clauseCe would be very large, making the learning process

prohibitively expensive. To overcome this problem, it is necessary

to obtain smaller tuple sets I se1 ⊆ Ie1, . . . , I
s
em ⊆ Iem . Current

algorithms [5] do not use any reliable and principled sampling

operators, and they simply pick tuples to appear in I se j arbitrarily.

CastorX implements the following sampling techniques. For ease

of explanation, we explain our sampling techniques for the case

where we get as input a single database I .

4.2.1 Random Sampling. Let the function sample(Ie) return a

random sample of Ie . One approach to obtain a smaller tuple set I se
is to first compute Ie , and then compute I se =sample(Ie). A more ef-

ficient approach is to apply random sampling during bottom-clause

construction to directly compute I se . Assume that I contains only
two relations R1 (A,B) and R2 (B,C). Let M be the set of seen con-

stants. Let I ie be the set of tuples added to I
s
e in iteration i . In iteration

1, we search for constants inM in R1 and R2, i.e., I
1

R1

= σA,B∈M (R1)

and I1R2

= σB,C ∈M (R2), to obtain I1e = I1R1

∪ I1R2

. Because we are

performing a union operation and I1R1

and I1R2

are disjoint, we can

obtain a sample of I1e by sampling I1R1

and I1R2

separately and then

performing the union between these samples [4], i.e., sample(I1e) =

sample(I1R1

) ∪ sample(I1R2

). In iteration i for 2 ≤ i ≤ d ,M contains

constants found in previous iterations. Let a and a′ be two con-

stants in I i−1R1

, which were added toM . Assume that we are looking

for these constants in R2 to obtain I
i
R2

. If a appears more frequently

than a′ in I i−1R1

, then when computing sample(I iR2

), we should be

more likely to pick tuples that contain constant a compared to a′.
This is because we wish to obtain a random sample of Ie .

This is similar to the idea of doing random sampling over joins.

Olken [4] proposed an algorithm to perform sampling over bi-

nary joins. To compute sample(R1 ▷◁ R2), Olken’s algorithm first

obtains a uniform sample Rs
1
⊆ R1. Then, it performs the join

J = Rs
1
▷◁ R2. For each tuple t ∈ J , the algorithm accepts t to be in

sample(R1 ▷◁ R2) with a probability based on the frequency of the

value in the join attribute in R2, and rejects it otherwise. We adopt

this technique to perform random sampling during bottom-clause

construction. In iteration 1, we obtain a sample of I1e as above, where
we obtain a random sample of each relation, and then perform the

union between these samples. In iteration i for 2 ≤ i ≤ d , we ob-
tain the sample for each I iRj

by using Olken’s acceptance/rejection

technique, and then perform the union between these samples.

A definition for a target relation may require a relation that is

not necessarily in the random sample I se . Therefore, we may not be

able to learn the correct definition.

Example 4.2. Assume that we will learn a definition that requires
the relation spanishMovies in Table 3. We build a bottom-clause using
random sampling, and set sample size s = 1. Assume thatM contains
known constants ‘c1’ and ‘c2’ and we will obtain a random tuple
from relation movies2countries. Because constant ‘c1’ appears more
frequently than ‘c2’, it is more likely that we obtain movies ‘m1’ or
‘m2’, compared to ‘m3’. Therefore, our random sample will not contain
movie ‘m3’, hence will not access relation spanishMovies.

4.2.2 Stratified Sampling. We introduce the notion of strati-

fied sampling to bottom-clause construction. Let T be the target

relation for example e . A join path is any path that can occur in

T ▷◁ (∪R∈IR)1 ▷◁ . . . ▷◁ (∪R∈I)d . A stratified sample I se of Ie must

contain at least one occurrence of every possible join path in Ie .
We first compute all possible join paths. This can be done by only

looking at the schema. Then, for each join path, we obtain one or

more random samples. Finally, we perform the union of the samples

for each join path to obtain I se . Stratified sampling guarantees that

the relational learning algorithm will be able to access all relations,

hence explore a wide variety of definitions.

5 GENERALIZATION
After creating the bottom-clauseCe for example e , CastorX general-

izes Ce iteratively. First, CastorX randomly picks a subset Es+ ⊆ E+
of positive examples. For each example e ′ in Es+, CastorX generates

a candidate clauseC ′, which is more general thanCe and covers e ′.
To do so, it simply drops literals in the body ofCe that do not cover

e ′. CastorX then selects the highest scoring candidate clauses and

iterates until the clauses cannot be improved. There are multiple

functions to compute the score of a candidate clause, all of which

quantify the coverage of positive and negative examples [2]. Cas-

torX calculates the score of each candidate clause by subtracting the

DEEM’18, June 15, 2018, Houston, TX, USA Jose Picado, Arash Termehchy, and Sudhanshu Pathak

number of negative examples from the number of positive examples

covered by the clause.

Example 5.1. Consider the bottom-clause Ce in Example 4.1 and
positive example e ′ = highGrossing(Zoolander). To generalize Ce to
cover e ′, CastorX drops the literal movies2releasedate(y, ‘August’,u)
because the movie Zoolander was not released in August, according
to the database in Table 3.

5.1 Approximate Clause Evaluation
To select the highest scoring candidate clauses, CastorX computes

the number of positive and negative examples covered by the

clauses. These tests dominate the time for learning. One approach

to evaluate a clause is to transform the clause into a SQL query

and evaluate it over the input database I . However, the SQL query

will involve long joins, making the evaluation prohibitively expen-

sive on large clauses. Instead, CastorX uses an approach called

θ -subsumption. Clause C θ -subsumes C ′, denoted by C ⊆θ C ′, iff
there is some substitution θ such that Cθ ⊆ C ′. First, a ground

bottom-clause C
д
e is created for each example e ∈ E. A ground-

bottom clause is a bottom-clause that only contains ground atoms.

Then, I ∧C |= e if C ⊆θ C
д
e .

To reduce the time of evaluation, CastorX also builds C
д
e from

a subset I se ⊆ Ie , as done in Section 4.2. Because I se is a sample of

Ie , checking whether C ⊆θ C
д
e is an approximation of checking

whether I ∧C |= e , meaning that there may be errors. A good sam-

pling technique to obtain I se reduces errors. The learning algorithm

involves many (thousands) coverage tests. Because CastorX reuses

ground bottom-clauses, it can run efficiently over large databases.

5.2 Applying Chase
After finding the clauses with the highest scores, the clauses learned

by CastorX may contain similarity literals. In this case, we apply

the Chase to the learned definition to obtain a definition that can

be interpreted and holds over the integrated database, i.e., as if the

definition has been learned over the integrated and clean database

[1]. Generally speaking, for each similarity literal in the clause, the

Chase algorithm applies an MD whose left-hand side matches the

attributes used in the similarity literal and generates a new clause.

The algorithm iteratively applies MDs to the created clause until no

similarity literal is left in the clause. This algorithm is guaranteed

to terminate after finitely many steps [1].

Example 5.2. Assume that CastorX learns the following clause for
the target relation highGrossing over IMDb and BOM databases.
highGrossing(x) ← movies(y, t , z),movies2genres(y, ‘comedy’),

highBudgetMovies(x), sim(x , t).

GivenMD highGrossing[title] ≈ movies[title]→ highGrossing[title]
⇌ movies[title], CastorX unifies variables t and x and generates the
following clause:
highGrossing(x) ← movies(y,x , z),movies2genres(y, ‘comedy’),

highBudgetMovies(x).
Since there is no MD left to apply, Chase terminates.

The relationships between different databases can be expressed

using more complex MDs. For instance, one may want to assert that

two tuples in IMDb and BOM databases represent information about

Database

Sampling in Sampling in

Precision Recall

Time

bottom-clause clause (min)

construction evaluation

HIV

Naïve (k=10)
Naïve (k=10) 0.55 0.93 3.08

Naïve (k=20) 0.77 0.86 5.05

No sampling 0.84 0.87 27.99

Random (k=10)
Random (k=10) 0.55 0.90 13.25

Random (k=20) 0.75 0.83 28.84

No sampling 0.79 0.81 12.57

Stratif. (k=10)
Stratif. (k=10) 0.54 0.95 6.15

Stratif. (k=20) 0.83 0.89 9.92

No sampling 0.84 0.90 24.97

IMDb Naïve (k=10) 0.86 0.78 59.9

+BOM Stratified (k=10) 0.95 0.78 95

Table 4: Results of learning over the HIV and IMDb+BOM
databases. Sample size is denoted by k . ‘No sampling’ indicates that
the full ground bottom-clause was used for clause evaluation.

the same movies if their titles are similar and the movies share the

same set of genres. Supporting more complex MDs raises multiple

challenges. For instance, the order in which MDs are applied may

affect the output of Chase. Further, it is not clear how to correctly

evaluate the resulting clause over the underlying databases.

6 EXPERIMENTS
We use the HIV database, which contains information about chemi-

cal compounds. We learn the target relation antiHIV(comp), which
indicates that comp has anti-HIV activity. The database contains

7.8M tuples, 2K positive, and 4K negative examples. Table 4 (top)

shows the results for learning over the HIV database with different

sampling techniques using 10-fold cross validation. We refer to the

method of arbitrarily picking samples as naïve sampling.
We use the JMDB database (jmdb.de), which contains informa-

tion from IMDb, and the Box Office Mojo (BOM) database, to

learn a definition for the target relation highGrossing(title). The
JMDB and BOM databases contain 9M and 100K tuples, respec-

tively. We use the top 1K grossing movies in BOM as positive

examples, and the lowest 2K grossing movies in BOM as negative

examples. Because training data is created from the BOM database,

we create the MD highGrossing[title] ≈ JMDB.movies[title] →
highGrossing[title] ⇌ JMDB.movies[title] to allow CastorX to ac-

cess information in JMDB, where ≈ represents a maximum edit

distance of 10. Table 4 (bottom) shows the results using 5-fold cross

validation. In both experiments, stratified sampling delivers the

best trade-off between precision, recall, and running time.

7 CONCLUSION AND FUTUREWORK
We proposed CastorX, a relational learning system that enables

users to leverage information in multiple databases to learn the

definition of a target relation. We will extend CastorX to allow the

user to establish the relationships between multiple databases using

relatively more complex matching dependencies.

REFERENCES
[1] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and query answer-

ing with matching dependencies and matching functions. Theory of Computing
Systems, 2011.

[2] L. De Raedt. Logical and Relational Learning. Springer Publishing Company,

Incorporated, 1st edition, 2010.

[3] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. PVLDB,
2009.

[4] F. Olken. Random Sampling from Databases. PhD thesis, UC Berkeley, 1993.

[5] J. Picado, A. Termehchy, A. Fern, and P. Ataei. Schema Independent Relational

Learning. In SIGMOD, 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Relational Learning
	2.2 Matching Dependencies

	3 Problem Definition
	4 Finding Relevant Information
	4.1 Bottom-clause Construction
	4.2 Sampling in Bottom-clause Construction

	5 Generalization
	5.1 Approximate Clause Evaluation
	5.2 Applying Chase

	6 Experiments
	7 Conclusion and Future Work
	References

