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ABSTRACT
Public cloud database providers observe all sorts of different us-

age patterns and behaviors while operating their services. Service

providers such as Microsoft try to understand and characterize

these behaviors in order to improve the quality of their service,

provide new features for customers, and/or increase the efficiency

of the operations. While there are many types of patterns of behav-

ior that are of interest to providers, such as query types, workload

intensity, and temporal activity, in this paper, we focus on the low-

est level of behavior – how long do public cloud databases survive

before being dropped? Given the large and diverse relational data-

base population that Azure SQL DB has, we present a large-scale

survivability study of our service and identify some factors that

can demonstrably help predict the lifespan of cloud databases. The

results of this study are being used to influence how Azure SQL DB

operates in order to increase efficiency as well as improve customer

experience.
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1 INTRODUCTION
The emergence of cloud computing services as the dominant growth

area for technology enterprises is well accepted as world-wide

public cloud revenues are forecasted to more than double to $20B

(Platform-as-a-Service) and $100B (Software-as-a-Service) from

2016 to 2020 [16]. Service providers generally compete against

one another within a few measurable categories such as: price,

feature set, performance, and user experience/satisfaction. While

surveying customers is a well-established method of understanding

which categories need improving and what users would like to see,

cloud service providers also have vast quantities of “telemetry” data

generated by their service that can be data mined. In today’s hyper-

paced market, the provider that most quickly is able to leverage

this data will have a highly desirable advantage going forward.

Understanding user behavior and usage patterns is key. It is

the first step to improving operating efficiency (lowering costs)
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Figure 1: Kaplan-Meier survival curve for singleton
databases (with a 2 day survival minimum).

and maintaining stable performance and high user satisfaction

by minimizing service disruptions. This has recently been a hot

topic within the database research community. Modeling database

workload patterns [22, 25, 34] and predicting user behavior [14, 33,

35] has been well studied. These studies and others in Section 6,

have focused on what a user is doing with their database and when

they are doing it. This paper focuses on the “lowest-level” question:

after a database has been created, how long will it survive before
being dropped.

Why is the survivability of a database important to a cloud

provider? Obviously, it is tied directly to revenue – a provider

wishes that databases never get dropped. However, a more subtle

reason is the impact of ‘short-lived’ versus ‘long-lived’ databases

in determining resource provisioning and partitioning. Creating

databases is a straight-forward, but non-trivial operational task that

requires free resources to be found. Dropping databases also runs

counter to some load-balancing/fragmentation policies. Moreover,

as we identify in this study, certain customers have usage patterns

that call for frequent cycling of databases. Identifying these cus-

tomers and keeping their databases apart from databases that are

long-lived may alleviate noisy neighbor issues and improve back-

end efficiency (more in Section 3.1). Ultimately, in this study, we

would like to understand the survivability of databases in Microsoft

Azure SQL Database [5, 6], and, given a small observation period

after database creation, predict whether the database will survive

beyond 30 days.

We study the survivability of databases in this paper in the same

way as medical researchers study survival outcomes. Using the

Microsoft Azure SQL Database (SQLDB) telemetry at our disposal,

we consider large populations sets frommultiple production SQLDB

regions. Figure 1 depicts a Kaplan-Meier survival curve [19] of

singleton SQLDB databases (with at least a 2 day survival minimum)

over a five month period from a single Azure region. Azure SQLDB

also sells databases in elastic pools, which we ignore in this study

(see Section 2). We provide the background for Kaplan-Meier (KM)
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Figure 2: Kaplan-Meier survival curves of a population sub-
group classified into ’short-lived’ and ’long-lived’ after su-
pervised learning. Ideal classification results in the blue and
orange curves meeting their respective dots on the plot.

curves in Section 3. Essentially, this figure provides an estimate

for the percentage of databases (y-axis) that survive beyond some

number of days after their creation (x-axis). (Note: This figure does

not reveal database and/or subscription counts, nor creation rates

within the region. That is, even though many databases are being

dropped, more databases are being created, many times by the same

user – revealed both by inspection and our results.As such, we would
persuade the reader not to make any business conclusions from this
paper.) A key issue with survival analysis is the problem of “right-

censoring”, where we do not know the outcome for a particular

individual or sample (i.e., we do not know the actual lifespan of an

undropped database created 5 days ago) – KM curves handle this for

us, as well as allowing us to compare the survivability of different

population sets in a principled way through log-rank testing.

Our goal is to use machine learning to classify the population

into subgroups such that their survivability outcomes are signifi-

cantly different from one another (i.e., the differences between their
KM curves are statistically significant). In our study, we consider

a number of important and intuitive factors and their predictive

capabilities on the longevity of a public cloud database including

data volume, purchased performance objectives, and owning sub-

scription. Of course, we have access to hundreds of data features.

However, we have chosen to focus on a manageable few. Nonethe-

less, those that we study show statistically significant and marked

improvement over a naïve weighted random variable baseline.

Figure 2 depicts one of the results of our longevity predictions to

classify databases into two groups: short-lived databases (30 days

or less), and long-lived databases (more than 30 days)
1
. Similar to

Figure 1, the data is from a single region over the five month span.

This result was generated using random forests and the details

can be found in Section 4. In this figure, the orange KM survival

curve (the classified group “survival less than or equal to 30 days”)

ideally should terminate on the x-axis at day 30 (marked with an

orange dot), and the blue KM survival curve (the classified group

“longer than 30 days”) ideally should not fall below 100% until day

31 (marked with a blue dot). The distance between the blue curve

(at x = 30) and the blue dot indicate prediction error (similarly the

distance between the orange curve at x = 30 and the orange dot).

1
We plot smoothed KM curves using Python libraries, see Section 3.

The prediction results that we present later in the paper show

that we do not achieve perfect classification, but do achieve sig-

nificant accuracy levels (over 90%), and that the partitioning is

statistically significant (according to log-rank test due to the diver-

gence of the KM curves). Keep in mind, this is a hard problem, we

cannot read the minds of our users. Classifying the entire popula-

tion as a whole will only get us so far; identifying a subpopulation

where we have a good shot at successful classification versus an-

other that is inherently hard to classify is important (we show this

in our results.)

This work presents an industrial study on the factors affecting the

survivability of production cloud databases at scale and we present

an attempt to classify databases using random forest machine learn-

ing. The findings of this study will guide tenant placement and

resource provisioning policies in production Azure SQLDB and

are the basis for additional SQL Server and cloud infrastructure re-

search and development. We believe this study presents a valuable

look at how real users are actually using cloud database services;

it provides an inside look otherwise previously unavailable to the

general research community. The topics of discussion in this paper

are as follows:

• Presenting the analysis of database longevity in at-scale

production environments using the well-accepted survival

analysis approach from the life sciences.

• Formulating a classification prediction problem for use in a

resource provisioning framework based on database longevity.

• An evaluation of random forest models to complete, real-

world production data from Microsoft Azure SQLDB show-

ing substantial predictive improvements over a weighted

random variable baseline. Additional partitioning techniques

presented improve accuracy, precision, and recall to 90% and

beyond in many cases.

2 BACKGROUND
Microsoft Azure SQL Database:

Microsoft Azure SQL Database (SQLDB) is one of the leading

public, relational database services (Platform-as-a-Service model)

today. The service offers databases in a variety of price/performance

flavors. As of preparing this paper, the service leverages both a

remote storage tier and a local storage tier. The three database

editions sold, Basic, Standard, and Premium, are split across the two

different storage tiers – Basic and Standard on remote storage and

Premium on local storage. Each of these editions further provides

multiple service level objectives (SLO) that vary in performance as

well as redundancy, back-up retention, data volume, etc.

To provide flexible options for elasticity, after a database is cre-

ated under a certain edition and SLO, a user can readily change the

database to a new SLO or even a new edition with a single command.

Doing so allows a user to tailor performance levels on-demand and

also manage service costs. For instance, it has been observed that

users scale down their SLOs on Fridays and scale them back up on

Monday morning for the pending work week.

SQLDB also provides an “elastic pool” provisioning model for the

different editions just discussed. That model, as the name suggests,

allows users to create many databases that share resources from a

single resource pool; in contrast to singleton databases that have
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dedicated resources that are not shared. In this work, we ignore

elastic pool databases and focus on the “single database” option.

Azure SQL Database telemetry:
For this study, we use the SQLDB telemetry that is emitted

from each unique database from its creation through to when it is

dropped. Each database emits all sorts of telemetry such as utiliza-

tion levels [21], query meta-data, file sizes, and other database prop-

erties. Using these telemetry streams, we try to find features that are

predictive of different survival lengths of our cloud databases. For

business and privacy reasons [4], and discussion length, we are not

able to examine and/or discuss all possible features at our disposal,

but we present some intuitive features that may be predictive.

Machine learning:
In a supervised machine learning task, we are given training

data D = {(x1,y1), · · · , (xn,yn )} and the goal is to learn a model h
that approximates the function f such that f (xi) = yi . Each item

(xi,yi ) ∈ D is called a training example. In a classification task, yi
is a categorical value, while in a regression task, yi is a numeri-

cal value. Each vector xi consists of a set of features, where each
feature represents a property of training example i . In this paper,

we use random forests as our model [10]. A random forest model is

an ensemble of decision trees. Each tree is learned independently

using a subset of features, which are selected randomly. The final

prediction of a random forest model is obtained by aggregating

over the predictions of all learned trees. Random forests serve as a

general-purpose technique, are fast to train, and have been shown

to produce highly accurate predictions [2, 7].

3 ANALYZING DATABASE SURVIVAL
3.1 Longevity-guided Resource Provisioning
As we discussed briefly in the introduction, there are obvious busi-

ness reasons that can be treated as motivations for this work. A

database that survives an additional hour translates to direct rev-

enue for the provider. Needless to say, there are many business

and user experience improvements that are derived from a deep

understanding of the segments of databases and segments of users

that drop their databases and why.

Our motivations, instead, are on the back-end improvements to a

cloud service that are possible if we were able to characterize users

and databases into different classifications of database longevity.

This would allow us to partition users and their databases and the

resources that we provision accordingly for a number of reasons

and, in this discussion, we describe two. First, we may be able to

avoid any sort of service disruption (e.g., performance) due to main-

tenance if we know that a database will soon be dropped anyway.

Providers must constantly roll out service updates and some of

these may impact performance if only for a short time. We have

observed that there are many users that frequently churn through

databases for various reasons including the nature of their applica-

tions. If a set of updates is non-critical, say a new feature, there is

no need to risk impacting a database that will be dropped; the user

will simply receive the update when they create a new database

that launches the latest software. By provisioning a subcluster of

resources for these databases we can easily employ such a policy.

Secondly, as we mentioned in Section 2, Azure SQLDB aims to

provide flexibility in terms of database price/performance. Chang-

ing database service level objectives (SLOs) up and down the per-

formance ladder involves resource allocation and deallocation re-

spectively. These events occur alongside database create and drop.

If we can classify databases as short versus long-lived, we can alle-

viate resource allocation contention between long-lived databases

that change their SLOs and users that frequently create and drop

databases. Furthermore, dropping a database after a load-balancer

has moved it lowers operational efficiency. Again, this points to a

partitioning of resources and databases on some longevity basis.

Doing so may improve the quality of service for all users.

3.2 Survival Analysis Tools
Survival analysis is a collection of statistical techniques for ana-

lyzing the expected duration of time until an event occurs [20].

Survival analysis has been traditionally used in life sciences and

medical fields, where the focus is on the survivability of individuals

in a population that suffer from some condition or the outcome

when a treatment is applied. We use survival analysis tools to ana-

lyze the survivability of cloud databases in Microsoft Azure SQL

Database (SQLDB). In our case, the population consists of databases,

and the event of interest is the death of a database, i.e., a database

is dropped.

Survival analysis tools are useful for determining the proportion

of a population that will survive after a given time t . It is likely
that, at the time of answering this question, some individuals in

the population have not been subject to the event of interest. For

instance, at the time of writing of this paper, vast numbers of SQLDB

databases in our population have not been dropped (thankfully).

The individuals in the population that have not experienced the

event of interest are labelled as right-censored [20]. This means

that we do not have the complete data about the lifespan of these

individuals, and only observe the current lifespan duration.

The survival function, defined as S (t ) = P (T > t ), gives the
probability that the event of interest has not yet occurred at time

t for a randomly chosen individual with lifespan T . We use the

survival function to analyze the lifespan of databases. For instance,

we can compute the probability that a database will survive a given

amount of time, and compare the probability of survivability of

databases in different populations, e.g., Basic vs. Premium databases.

The survival function is theoretically a smooth curve. It can be

empirically estimated using the Kaplan-Meier (KM) estimator [19].
The KM estimator is given by Ŝ (t ) =

∏
i :ti<t

ni−di
ni , where ni is

the number of individuals at risk and di is the number of events at

time ti . The larger the population, the better the KM estimator can

estimate the survival function. An important property of the KM

estimator is that it can take into account right-censored individuals.

The KM estimator can be visualized using the KM curve, which

plots time t against Ŝ (t ), as seen in Figure 1. We use the survival

analysis tools in the Lifelines package [3] in Python.

3.3 Survival Analysis of Azure SQL Databases
In this section we analyze the survivability of SQLDB databases.

We create a dataset consisting of cloud databases in SQLDB created

over a period of five months. We consider three of the largest
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Figure 3: Kaplan-Meier curves for Basic, Standard, and Pre-
mium databases, sub-categorized by whether they changed
edition, over Region-1 (top), Region-2 (middle), and Region-
3 (bottom).

Azure regions around the world which we call Region-1, Region-2,

and Region-3. Additionally, we have filtered the databases down

to singleton databases of Basic, Standard, or Premium editions,

belonging strictly to external clients. (There are internal databases

that Microsoft provisions for internal users as well as for serving

other external facing products and services that Microsoft sells;

these are not included.)

In this section we provide some interesting observations that

we discovered from our dataset. These observations are seen in

the three regions that we analyzed. Note that these are not experi-

ments; this is a survivability study of SQLDB databases. Let T be

the lifespan of database I . We label I as ephemeral if T ≤ 2 days,

short-lived if 2 < T ≤ 30 days, and long-lived if T > 30 days.

On Azure, databases are associated with a subscription belong-

ing to a customer (customers can have many subscriptions). We

found that a small subset of all subscriptions create only databases

that are ephemeral. Many of these databases are the result of fre-

quent cycling of databases, a usage pattern identified for some

customers. These databases represent a significant percentage of

the total population. Therefore, by simply looking at historical data,

we can identify customers that follow this pattern, and keep their

databases separately from short-lived and long-lived databases.

Observation 3.1. A low percentage of all subscriptions create
only ephemeral databases. These subscriptions show a usage pattern
that calls for frequent cycling of databases.

In this discussion, we filter out ephemeral databases from our

dataset, and focus on short-lived and long-lived databases. Even

though we omit a significant number of databases, we are still ana-

lyzing the lifespan of databases associated with a high percentage of

subscriptions. This is because a large percentage of all subscriptions

create both ephemeral, as well short-lived or long-lived databases.

Figure 1 depicts the KM survival curve of all databases hosted

in Region-1. The KM curves for Region-2 and Region-3 follow a

similar decay trend. In all of the curves there is a drop at around

120 days. This can be explained in part by certain special incentive

offerings ending and databases drop at around that time. Generally,

Basic and Standard edition databases contribute to this drop-off.

The curves flatten around 0.4, meaning that there is a probability

of 40% that a database (in our defined population) is alive after 130

days.

A user can change a database to a new edition during its life-

time. We sub-categorize databases in each edition into two groups:

databases that did not change edition during their lifetime, which

we refer to as “always”, and databases that changed edition during

their lifetime, which we refer to as “changed”. Figure 3 shows the
KM curves for Region-1, Region-2, and Region-3, categorized by

edition and sub-categorized into “always” or “changed”. Databases

of different editions follow different trends. For instance, Basic

databases have a rate of decay significantly lower than Premium

databases.

Observation 3.2. The survival function of databases is different
for each edition.

In Figure 3, we can see that the survival function is also different

for Basic-always and Basic-changed groups, as well as Standard-

always and Standard-changed groups. However, we noticed that

proportionally few databases in Basic and Standard edition switch to

a new edition during their lifetime. This is not the case for Premium

databases. This is expected, as Premium is the most expensive

edition offered in SQLDB, and it is common for users to downgrade

databases from Premium to another edition for a forthcoming low-

utilization period and upgrade back when necessary.

Observation 3.3. Proportionally fewer Basic and Standard databases
(compared to Premium) change edition during their lifetime.

These observations provide insights about how customers use

the SQLDB service. Further, we use these insights to formulate our

prediction problem in Section 4, as well as to design experiments

in Section 5.
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Figure 4: After x = 2 days from creation, can we predict
whether the database will live longer than y = 30 days?

4 PREDICTING DATABASE LIFESPAN
4.1 Problem Formulation
Given the potential benefits of partitioning databases into short-

lived and long-lived, as described in Section 3.1, we pose the fol-

lowing problem: Given the telemetry data produced by a database
instance I in the first x days after I is created, can we predict whether
I is going to live more than y days? We perform a classification task

where the two classes are: live more than y days, and live less than

or equal to y days. As we are making a prediction x days after

database I is created, we assume that I lives longer than x days.

If this is not the case, then there is no need to make a prediction.

In this paper, we focus on the case where x = 2 days and y = 30

days. That is, after just 2 days, we predict whether a database will

be short-lived or long-lived.

Example 4.1. Consider the timeline presented in Figure 4. Let

I be a database instance created on June 1st at 10:00am, marked

in the figure. We observe telemetry data produced by I for 2 days,
represented by the green region. On June 3rd at 10:00am (2 days

after I is created), we predict whether I will be long-lived (be alive

after July 1st at 10:00am, 30 days after it is created), or short-lived

(dropped before July 1st at 10:00am, represented by the grey region).

We learn a random forest [10] model to classify databases as

short-lived or long-lived. Random forests produce highly accurate

predictions, even when trained with relatively small amounts of

data. Furthermore, one can compute the importance of the input

features, which is useful for identifying the most predictive factors

for determining the lifespan of cloud databases.

4.2 Features
Telemetry streams consist of raw data that capture information

about databases and events related to them. We perform feature

engineering to obtain a set of features that are useful in our predic-

tion task. These features are derived from the telemetry data, and

are used as input to the random forest model.
2
Features fall into

the following categories.

Creation time: Telemetry data includes the date and time in which

a database is created. We first localize the date and time according

to the region in which the database is hosted. Then, we compute

the following features:

• Day of the week (1-7)

• Day of the month (1-31)

• Week of the year (1-52)

• Month of the year (1-12)

• Hour of the day (0-23)

2
We also examined many additional features, in adherence to our privacy policy [4].

These features allow the model to capture temporal patterns. For

instance, the model may discover that databases created on week-

ends tend to live less than 30 days. One reason for this trend may

be that these database are created and dropped by an automated

process.

Server and database names: A database is created in an Azure

SQL Database logical server. The user must provide a server name

and database name. For server and database names, we compute

the following features:

• Length

• Number of distinct characters

• Distinct character rate (number of distinct characters / length)

• Whether name contains letters and digits

• Whether name contains upper and lower case letters

• Whether name contains non-alphanumeric symbols

The goal of these features is to determine whether a server/database

is created manually or by an automated process. For instance, a

name that is manually written by a user may have a low charac-

ter rate, as the words composing the name may contain multiple

repeated characters. On the other hand, a randomly created name

generated by an automated process is more likely to have a high

character rate.

We experimented with features based on n-grams (character

level) from server and database names. We discuss the impact of

these features in Section 5.4.

Database size: The size of the database may change during the

time that we observe telemetry data. We consider features that

capture both the absolute size of a database, as well as changes in

size during the observed period of time. We consider the following

features:

• Maximum, minimum, average, and standard deviation of the

absolute database size in megabytes

• Rate of change in size from day of creation to day of predic-

tion

The rate of change in size may provide clues about the database

lifespan. For example, if the size of a database does not change in

the first 2 days, then it may the case that the database will live

longer than 30 days.

Edition and performance level: At any moment, a database be-

longs to an edition and performance level. A user may change the

edition and performance level of a database throughout its lifetime.

Each performance level is assigned a number of database trans-

action units (DTUs) [5]. We compute the following features for

editions and performance levels:

• Number of edition/performance level changes

• Number of distinct editions/performance levels

• Edition at the time of prediction

• Performance level at the time of prediction

• Difference between edition/performance level at time of cre-

ation and edition/performance level at time of prediction

• Maximum, minimum, and average DTUs assigned to the

database based on its performance level

Subscription type: When a database is created, it is associated

with a subscription. Azure offers several types of subscriptions, e.g.,

trial, consumption, benefit programs, etc. We create a feature for
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each subscription type t , which takes a value of 1 if the subscription

associated with the database is of type t at the time the database is

created, and 0 otherwise.

Subscriptionhistory:We created features to capture the historical

behaviour of the user associated with the subscription. For instance,

if all databases associated with a subscription live less than 30

days, then it is likely that a newly created database associated

with this subscription will also live less than 30 days. Let I be the
database for which we are computing features,C be the subscription

associated with I , Tc be the time in which I was created, and Tp be

the time of prediction for I . We obtain all databases associated with

subscription C . These include databases that are alive between Tc
andTp , as well as databases that were dropped beforeTc . We group

these databases in three groups: 1) databases created before Tc and

dropped after Tc , 2) databases created before Tc and dropped any

time (even beforeTc ), and 3) databases that are created afterTc and
before Tp . Notice that group 1 is a subset of group 2. For each of

these groups, we compute the following features:

• Number of databases

• Maximum, minimum, average and standard deviation of the

size of all databases, where size is the maximum size that

the database had (only for groups 1 and 2)

• Maximum, minimum, average, and standard deviation of the

lifespan of all databases (only for groups 1 and 2)

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Dataset:Weobtain the telemetry data produced byMicrosoft Azure

SQL DB databases in three regions, which we call Region-1, Region-

2, and Region-3. This telemetry spanned 5 months within the past

year. As seen in Section 3, databases in each edition have different

usage patterns. Therefore, over each region, we divide the databases

into three subgroups, according to the edition in which they were

created: Basic, Standard, and Premium. Notice that even though

the edition of a database may change, e.g., from Basic to Standard,

all subgroups are mutually exclusive. We run experiments on each

subgroup, resulting in a total of nine sub-experiments (three regions

and three subgroups per region).

In our experiments, we use telemetry data for x = 2 days to

predict whether a database will live more than y = 30 days, i.e., dis-

criminate between short-lived and long-lived databases. A database

is classified as positive if it lived more than 30 days, otherwise it is

classified as negative. We also experimented with different values

for x and y. However, in this paper, we only present the results for

the case where x = 2 and y = 30 days.

Approach:We learn a random forest model for each subgroup

in the dataset. We divide the databases in each subgroup into 80%

training and 20% testing sets. We perform parameter tuning for

each model by doing grid search using 5-fold cross-validation over

the training set. We use the tuned model to make predictions on

the testing set. We perform each experiment 5 times and report

the average accuracy, precision, and recall over the testing set.

Accuracy is the ratio of correctly classified databases. Precision is

the fraction of examples correctly classified as positive among all

examples classified as positive. Recall is the fraction of examples

correctly classified as positive among all actual positive examples.

We use the scikit-learn package [29] in Python.

Baseline: We use a weighted random classifier as our baseline.

The random classifier makes predictions the following way. It first

computes the probability p that an example is positive solely based

on the class distribution in the training data. For each example in

the testing set, it computes a random number r between 0 and 1. If

r < p, it classifies the example as positive; otherwise, it classifies it

as negative.

We first present the ‘whole population’ results, where we trained

and classified the population from a region as a whole. While the

results are good, we sought improvement. Subsequently, we devised

a way to determine when our classifications were more reliable

(confident) or less reliable (uncertain). We also present those clas-

sification scores, which show significant improvement when we

deemed a classification confident. Ultimately, we show that for

confident classifications (roughly 60% of the whole population),

we achieve significantly improved scores compared to the whole

population scores.

5.2 Results - Whole Population
Figure 5 shows the accuracy, precision, and recall scores over Basic,

Standard, and Premium databases, over the three regions. The blue

bars represent the predictions of the random forest model, while the

yellow bars represent the predictions of the baseline. The random

forest model significantly outperforms the baseline over all editions

and all regions. Over Basic edition, our model obtains an average

accuracy of 0.81 compared to 0.56 by the baseline, 0.83 precision

compared to 0.68 by the baseline, and 0.92 recall compared to 0.68 by

the baseline. Over Standard edition, our model obtains an average

accuracy of 0.81 compared to 0.51 by the baseline, 0.79 precision

compared to 0.55 by the baseline, and 0.88 recall compared to 0.56 by

the baseline. Over Premium edition, our model obtains an average

accuracy of 0.80 compared to 0.55 by the baseline, 0.75 precision

compared to 0.35 by the baseline, and 0.66 recall compared to 0.35

by the baseline.

Overall, our model obtains an accuracy higher than 0.80. This

means that our model makes correct predictions at least 80% of

the time. To better interpret the results, it is useful to look at the

precision and recall scores. For instance, over Basic edition, our

model obtains precision of 0.83 and recall of 0.92, on average. This

means that from the databases that our model predicts to live longer

than 30 days, 83% of these predictions are correct. Further, themodel

is able to identify 92% of the databases that live longer than 30 days.

Over the Premium edition, it is difficult to predict whether a

database will be long-lived. This is reflected in the low recall scores

in Figure 5i. There are two reasons for this. First, the population

of Premium databases is significantly smaller than the population

of Basic or Standard databases. Therefore, we have fewer training

examples. Second, the positive and negative class distribution is

more imbalanced among the Premium databases than the Basic or

Standard databases. This is reflected on the low scores obtained by

the baseline.

Statistical significance of classifications: To determine how

well our model separates short-lived and long-lived databases, we

divided the databases in the testing set according to their predicted
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(a) Basic edition - accuracy (b) Basic edition - precision (c) Basic edition - recall

(d) Standard edition - accuracy (e) Standard edition - precision (f) Standard edition - recall

(g) Premium edition - accuracy (h) Premium edition - precision (i) Premium edition - recall

Figure 5: Results of predicting database lifespan over Basic (top), Standard (middle), and Premium (bottom) editions for the
whole population.

class, and then plotted the KM curves for each group. Figure 6

shows the KM curves for Basic, Standard, and Premium databases

predicted to be short-lived (orange) and long-lived (blue). Clearly,

our model is able to separate the databases with relative success.

However, our model is not perfect: the blue lines should start drop-

ping after the 30-day mark, while the orange lines should have

completely dropped by the 30-day mark (recall the dots in Figure 2).

To test how significantly different are the classified groupings, we

performed log-rank tests. The log-rank test is a hypothesis test that
compares the survival distributions of two samples, where the null

hypothesis is that the survival distributions are identical [20]. All

classified groupings by the random forest model have p-values

below 0.0000001. Therefore, the separation of the two classes is

statistically significant. On the other hand, the classified group-

ings by the baseline have p-values greater than 0.05, which is not

considered statistically significant.

5.3 Results - Confidence Partitioning
According to our motivation, we would like to make resource provi-

sioning decisions based on the predicted classification of databases.

There may be high costs of making incorrect decisions. For instance,

if a database that is predicted to be short-lived actually lives more

than 30 days, it may impact our load balancing policies. Therefore,

besides predicting the class of an example, we would like some

confidence level about the prediction. Random forests output an

estimate of the probability that an example belongs to a class. We

use this probability estimate as a confidence level [36]. Notice that

by confidence level, we simply mean the probability estimates gen-

erated by our model; it is different from its meaning in common

statistical terms.

In this section, we use the confidence levels of the predictions

to divide predictions into two groups: confident and uncertain.
Confident predictions should have high confidence levels, i.e., the

model predicts that an example belongs to a class with high prob-

ability. Therefore, if we want to mitigate misclassification costs, we
can take actions only on confident predictions. For instance, if the
model predicts that a database will live more than 30 days with 95%

probability, then this database can be safely moved to a server that

only contains long-lived databases. Ideally, confident predictions

should obtain high accuracy, precision, and recall scores.

In decision trees, the probability that an input example is classi-

fied as positive (negative) is equal to the fraction of positive (neg-

ative) examples in the leaf making the prediction. For instance, if

there are 10 examples in a leaf node and 8 of them are positive, when

the decision tree classifies an example as positive based on this leaf

node, the probability that the example is positive is 80%. The class
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(a) Region-1 - Basic edition (b) Region-2 - Basic edition (c) Region-3 - Basic edition

(d) Region-1 - Standard edition (e) Region-2 - Standard edition (f) Region-3 - Standard edition

(g) Region-1 - Premium edition (h) Region-2 - Premium edition (i) Region-3 - Premium edition

Figure 6: Kaplan-Meier curves for whole-population classified groupings over Basic (top), Standard (middle), and Premium
(bottom) editions.

probabilities in a random forest are the result of averaging over the

class probabilities of the trees in the forest. An example is classified

as positive if the probability of being positive is greater than 0.5;

otherwise it is classified as negative. We use these probabilities as

confidence levels for the predictions.

To determine whether a prediction is confident or uncertain, we

set a threshold t , where 0.5 ≤ t ≤ 1, and use it in the following

way. Let p the predicted probability that an example is classified

as positive. As normal, if p > 0.5, the example is classified as

positive; otherwise it is classified as negative. If p ≥ t or p ≤ 1 − t ,
the prediction is considered as confident. On the other hand, if

1 − t < p < t , the prediction is considered as uncertain. That
is, predictions where the predicted probability is close to 0.5 are

considered as uncertain. To determine the value for the threshold t
we use the distribution of classes in the training data. Let q be the

percentage of positive examples in the training data. Then, we set

t = max(q, 1 − q). For example, if 70% of the training examples are

positive, then q = 0.7. Thus, t = max(0.7, 0.3) = 0.7.

Figure 7 shows the accuracy, precision, and recall scores for all

predictions (blue bars, same scores as in Figure 5), confident predic-

tions (green bars), uncertain predictions (red bars), and the baseline

(yellow bars, same scores as in Figure 5). The blue and and yellow

bars are included in this figure for ease of comparison. Table 1

shows the percentage of predictions that are confident or uncertain.

Confident predictions consistently improve our previous results,

in some cases reaching an accuracy of 0.92. We see the biggest

gains in Basic and Premium editions, where confident predictions

cover on average 63% and 71% of all predictions, respectively. There

is not much improvement over the Standard edition because the

distribution of short-lived and long-lived databases is balanced, i.e.,

approximately the same amount of positive and negative examples.

Therefore, the threshold for separating confident and uncertain
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(a) Basic edition - accuracy (b) Basic edition - precision (c) Basic edition - recall

(d) Standard edition - accuracy (e) Standard edition - precision (f) Standard edition - recall

(g) Premium edition - accuracy (h) Premium edition - precision (i) Premium edition - recall

Figure 7: Results of predicting database lifespan over Basic (top), Standard (middle), and Premium (bottom) editions with
confident and uncertain partitioning.

predictions is low. This results in confident predictions covering

almost all predictions. This is confirmed in Table 1, where confident

predictions over the Standard edition cover in average 90.3% of all

predictions. Interestingly, uncertain predictions still outperform

the baseline in most cases, particularly in Premium edition.

Statistical significance of classifications: As in Section 5.2,

we divided the databases in the testing set according to their pre-

dicted class, and plotted the KM curves for each group. Figures 8

and 9 show the KM curves for confident and uncertain predictions,

respectively. As can be seen, confident predictions better separate

the two classes. This is reflected in higher accuracy, precision, and

recall scores. The log-rank tests over confident classified groupings

output p-values below 0.0000001, making the separation statistically

significant.

On the other hand, uncertain predictions cannot successfully

separate the two classes. This is reflected in Figure 9, where the blue

and orange curves are mostly close to each other. Table 2 shows the

p-values obtained from performing log-rank tests over the uncertain

classified groupings. Over the Basic edition, the separation is still

statistically significant. However, this is not the case over Standard

and Premium editions. Specifically, in Region-1 and Region-3 over

the Standard edition, and Region-3 over the Premium edition, the

separation of classes is not statistically significant. Figure 9 shows

Edition Region Confident Uncertain

Basic

Region-1 58% 42%

Region-2 63% 37%

Region-3 68% 32%

Standard

Region-1 92% 8%

Region-2 82% 18%

Region-3 97% 3%

Premium

Region-1 71% 29%

Region-2 69% 31%

Region-3 73% 27%

Table 1: Percentage of confident and uncertain predictions.

that the separation of classes over these sub-groups is as good as a

random classifier.

5.4 Predictive Factors
One benefit of random forests is that one can extract the importance

of features, i.e., which features are most predictive. We use the gini-
importance to measure the feature importance. The gini-importance

is defined as the total decrease in node impurity averaged over all

trees in the forest. We use the gini-index to measure the node

impurity, defined as 2p (1−p), where p is the proportion of positive

examples in a node [18].
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(a) Region-1 - Basic edition (b) Region-2 - Basic edition (c) Region-3 - Basic edition

(d) Region-1 - Standard edition (e) Region-2 - Standard edition (f) Region-3 - Standard edition

(g) Region-1 - Premium edition (h) Region-2 - Premium edition (i) Region-3 - Premium edition

Figure 8: Kaplan-Meier curves for confident classified groupings over Basic (top), Standard (middle), and Premium (bottom)
editions.

Edition Region P-value

Basic

Region-1 < 0.0000001

Region-2 < 0.0000001

Region-3 < 0.0000001

Standard

Region-1 0.925429

Region-2 0.010043

Region-3 0.379127

Premium

Region-1 0.004774

Region-2 0.008219

Region-3 0.371621

Table 2: P-values resulting from log-rank tests over uncer-
tain classified groupings.

The most predictive features are related to the subscription his-

tory, i.e., history of databases owned by the subscription. This is

intuitively expected. For instance, if all databases associated with a

subscription are short-lived, then it is likely that a new database

associated with this subscription will also be short-lived. Also, the

features indicating the number of databases created by the subscrip-

tion have high importance.

The second most predictive features are related to the server and

database names. This confirms our hypothesis that these features

are useful for identifying whether a database is created manually or

by an automated process. However, we did not see any improvement

in accuracy when using features based on n-grams from names. In

some cases, top n-grams came from common server and database

names, which caused the model to overfit.

Finally, the third most predictive features are related to the cre-

ation time, specifically the hour of the day, day of the month, and
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(a) Region-1 - Basic edition (b) Region-2 - Basic edition (c) Region-3 - Basic edition

(d) Region-1 - Standard edition (e) Region-2 - Standard edition (f) Region-3 - Standard edition

(g) Region-1 - Premium edition (h) Region-2 - Premium edition (i) Region-3 - Premium edition

Figure 9: Kaplan-Meier curves for uncertain classified groupings over Basic (top), Standard (middle), and Premium (bottom)
editions.

week of the year in which a database was created. Hour of the day

may indicate whether or not the databases are created under au-

tomation versus during waking business hours. Similarly, databases

created during a regional holiday (our data trace spans five straight

months, covering a number of regional holidays in each data center

region) also may imply automated database creation.

5.5 Summary of Results
It is non-trivial to predict the lifespan of databases. Generally,

customers follow different patterns of behavior. Therefore, two

databasesmay have completely different characteristics even though

they belong to the same class. Also, the population contains outliers

that have different characteristics from all other databases. Even

with these difficulties, our model is able to achieve 80% accuracy

over all predictions, and in many cases 90% accuracy over confident

predictions. Furthermore, our model can separate classes so that

the difference of survival distributions of databases in each class is

statistically significant.

It is important to note that we have been able to segment databases

(and users) into those that are easier to classify correctly versus

those databases (and users) that we struggle with. First, this seg-

mentation does not prune away a significant subpopulation; Table 1

shows that at worst we still have confidence over at least 58% of

an edition subpopulation and in some cases over 95% of an edition

subpopulation. Second, having a principled way to segment the

population allows us to build in policies for uncertain classifications

into our longevity-designated resource provisioning schemes (Sec-

tion 3.1). For instance, we may leave a designated pool of resources

for users that we are unable to accurately classify.
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Another difficulty in classifying databases as short-lived vs. long-

lived is that some databases in each class may have similar charac-

teristics. For instance, there may be not much difference between

a database that lived 28 days, compared to a database that lived

32 days. We noticed that a significant percentage of databases that

cannot be classified confidently have a lifespan close to 30 days.

It is difficult for our model to correctly classify these databases.

Therefore, in the case that there are misclassification costs, it is

useful to identify which databases are classified with some level of

confidence, and only take actions on these databases. Our model is

able to make confident predictions in 63% of Basic databases, 90.3%

of Standard databases, and 71% percent of Premium databases, on

average.

6 RELATEDWORK
As we discussed earlier in Section 1, there has been tremendous

research interest in all aspects of cloud database services. Some of

these focus on learning about user workloads and resource demands

of queries [13, 15, 24, 26, 28]. These are all extremely valuable and

important studies that suggest that database service providers can

take the workload and utilization telemetry that they have to either

efficiently allocate resources, or help the database learn how to

perform faster.

From a service back-end perspective there are many different

issues related to operational reliability and efficiency that demand

industrial studies. Some examples of industrial topics and studies

include: cost management [17], performance isolation [27], demand

forecasting [8, 12, 22], as well as analysis [9], machine learning [32],

and data management at scale [30]. There have been a number

of survivability studies in other domains, such as studies about

the survivability of data in storage systems [23, 31]. Similar to

us, these studies analyze the correlation between distinct factors

and longevity [31], and share our motivation of understanding

survivability for planning and designing provisioning and storage

solutions [23]. However, none of the studies discuss the survival

of cloud databases, and few of them present real-world data at the

scale and detail that we show here. We hope that our work spurs

other cloud service providers to also discuss some of the behavior

and data that they see in order to share these real-world insights

with other researchers.

There are many different statistical and machine learning tech-

niques to perform the analysis that we have done in this paper.

The goal of our work was not to compare different approaches, but

rather understand database survival in a cloud setting, and identify

features that are predictive of lifespan. We used random forests

as our model of choice [10]. Random forests have properties that

make them useful for our task. They can handle a large number

of features without overfitting, and they produce highly accurate

predictions [7]. Studies have shown that random forests give good

performance over a wide range of metrics [11]. Ensemble of deci-

sion trees, such as random forests, have been known to dominate

data science competitions [1, 2]. We use the estimated probabilities

by the random forests to divide predictions into confident and un-

certain predictions. Random forests can successfully estimate class

probabilities, even without calibration [11].

7 CONCLUSIONS
Besides the obvious business reasons for database service providers

to wish to understand how the service is being used and for what

reasons databases are being dropped, there are significant back-

end infrastructure and policy improvements that can influence

efficiency, user experience, and performance. Consequently, this

study represents a production-scale, broad analysis of database

survival in Azure SQL Database. We have presented a first look at

public cloud database survivability and evaluated random forest

classification over our population into short-lived and long-lived

classes. We find that we can achieve over 90% accuracy in the many

statistically significant subpopulations evaluations. Importantly,

doing so allows us to identify users (subscriptions) that generally

create short-lived or long-lived databases and with this knowledge,

we will intelligently provision designated resources for different

pools of databases.
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