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Abstract

One of the challenges to information extraction is the require-
ment of human annotated examples. Current successful ap-
proaches alleviate this problem by employing some form of
distant supervision i.e., look into knowledge bases such as
Freebase as a source of supervision to create more examples.
While this is perfectly reasonable, most distant supervision
methods rely on a hand coded background knowledge that
explicitly looks for patterns in text. In this work, we take a
different approach — we create weakly supervised examples
for relations by using commonsense knowledge. The key in-
novation is that this commonsense knowledge is completely
independent of the natural language text. This helps when
learning the full model for information extraction as against
simply learning the parameters of a known CRF or MLN. We
demonstrate on two domains that this form of weak supervi-
sion yields superior results when learning structure compared
to simply using the gold standard labels.

1 Introduction

Supervised learning is one of the popular approaches to in-
formation extraction from natural language text where the
goal is to learn relationships between attributes of interest —
learn the individuals employed by a particular organization,
identifying the winners and losers in a game, etc. There have
been two forms of supervised learning particularly used for
this task: First, is the pure supervised learning approach.
For instance, the NIST Automatic Content Extraction (ACE)
RDC 2003 and 2004 corpora, has over 1000 documents that
have human labeled relations leading to over 16000 rela-
tions being mentioned in the documents (?). ACE systems
then use textual features — lexical, syntactic and semantic
features — to learn the mentions of the target relations (?;
.

But pure supervised approaches are quite limited in scal-
ability due to the requirement of high quality labels. An
attractive very successful second approach is distant su-
pervision where, labels of relations in the text are cre-
ated by applying a heuristic in a common knowledge base
such as Freebase (?; ?; ?). An important property of such
methods is that the quality of the labels are crucially de-
pendent on the heuristic used to map the relations to the
knowledge base. Consequently, there have been several ap-
proaches that aim to improve the quality of these labels rang-

ing from casting the problem as multi-instance learning (?;
?) to using patterns that frequently appear in the text (?).

We take a different approach of creating more examples
to the supervised learner based on weak supervision (?).
We propose to use commonsense knowledge to create sets
of entities that are “potential” relations. This common-
sense knowledge is written by a domain expert in a prob-
abilistic logic formalism called as Markov Logic Networks
(MLN) (?). The algorithm then learns the parameters of
these MLN clauses (we call them as world MLN — WMLN —
to reflect that they are non-linguistic models) from a knowl-
edge base such as Wikipedia. During the information ex-
traction phase, unlabeled text are then parsed through some
entity resolution parser to identify potential entities. Then
these entities are provided as queries to the world MLN
which uses data from non-NLP sources such as Wikipedia
to then predict the posterior probability of relations between
these entities. These predicted relations become the proba-
bilistic (weakly supervised) examples for the next step.

Our hypothesis is — which we verify empirically — that
the use of world knowledge will help in learning from nat-
ural language text. This is particularly true when there is a
need to learn a model without any prior structure (a CRF or
a MRF or a MLN) since the number of examples needed to
learn the model can be very large. These weakly supervised
examples can then augment the gold standard examples to
improve the quality of the learned models. So far, the ma-
jor hurdle to learning structure in information extraction is
the number of features which can be very large leading to
increased complexity in the search. We employ a recently
successful probabilistic logic learning algorithm based on
Relational Functional Gradient Boosting (REGB) (?; ?; ?;
?) for learning structure of these models.

Inspired by this success, we adapt the RFGB algorithm to
learn in the presence of probabilistic examples by explicitly
opitimizing the KL-divergence. We then employ RFGB in
two different tasks, the first task is learning to jointly pre-
dict game winners and losers from NFL news articles'. We
learned from 50 labeled documents and used 400 unlabeled
documents. For the unlabeled documents, we used a com-
mon publicly available knowledge base such as Freebase to
perform inference on the game winners and losers. We also
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evaluate our algorithm on a second task, that of classifying
documents as either football or soccer articles. We perform
5-fold cross validation on these tasks and our experiments
conclusively prove that the proposed approach outperforms
simply learning from gold standard data.

To summarize, the key contribution of the paper is that
when we can bias the learner with examples created from
commonsense knowledge, we can distantly learn structure.
Our proposed algorithm has two distinct phases:

1. Weakly supervised example generation phase, where the
goal is to use commonsense knowledge (WMLN). This
WMLN could contain clauses such as “Higher ranked
teams are more likely to win”, "Home team are more
likely to win”, etc. Given this WMLN, parameters
(weights) are learned from a knowledge base by look-
ing at the previously completed games. Of course, these
weights could also be provided by the domain expert.
Once these weights are learned, predictions are made on
entities extracted from unlabeled text and these predic-
tions serve as weakly supervised examples for our next
phase. Note that this phase is independent of the linguis-
tic information and simply relies on world knowledge.

2. Information extraction phase, where the noisy examples
are combined with some “gold standard” examples and
a RDN is learned using textual features from the gold
standard and the weakly supervised documents. Note that
this phase only uses the text information for learning the
model. The world knowledge is ignored when learning
from linguistic features.

While our proposed approach has been presented in the
context of information extraction, the idea of using outside
world knowledge to create examples is more broadly appli-
cable. For instance, this type advice can be used for labeling
tasks (?) or to shape rewards in reinforcement learning (?)
or to improve the number of examples in a medical task.
Such advice can also be used to provide guidance to a learner
in unforseen situations (?).

We proceed as follows: after reviewing the related work,
we present the two phases of our approach in greater detail.
We then present the experimental set up and results on the
NFL task before concluding by pointing out future research
directions.

2 Related work
2.1 Distant Supervision

As mentioned above, our approach is very similar to the dis-
tant supervision approaches (?; ?) used to generate more
training examples based on a knowledge base. These ap-
proaches use an external knowledge base to obtain a set of
related entities. Sentences in which any of these related
entities are mentioned, are now considered to be positive
training examples. These examples along with the few an-
notated examples are provided to the learning algorithm.
These approaches assume that the sentences that mention
the related entities express the given relation. Riedel et al.
(?) relax this assumption by introducing a latent variable
for each mention pair to indicate whether the relation is

mentioned or not. This work was further extended to al-
low overlapping relations between the same pair of entities
(e.g. Founded (Jobs, Apple) and CEO-of (Jobs,
Apple)) by modifying the latent variable to indicate the
type of relation expressed by the sentence (?). In our ap-
proach, we define a model based on non-linguistic common
sense knowledge to generate the distant supervision exam-
ples. Although we rely on a knowledge base to obtain the
relevant features for our model, one can imagine tasks where
such features are available as inputs or extracted further up
in a pipeline.

2.2 Statistical Relational Learning

Most NLP approaches define a set of features relevant to the
task and use propositional methods such as logistic regres-
sion. To obtain these features, they use structured output
such as parse trees, dependency graphs, etc. obtained from a
NLP toolkit. Recently, there has been a focus of employing
Statistical Relational models that combine the expressive-
ness of first-order logic and the ability of probability theory
to model uncertainty.

Many tasks such as BioNLP (?) and TempEval (?) in-
volve multiple relations that need to be extracted jointly.
Moreover, there are constraints on these relations, which
are either defined by the task or by the user. To address
these issues, Chambers and Jurafsky (?) defined the con-
straints using integer linear programming to jointly extract a
consistent set of temporal relations. SRL models, on the
other hand, can define the constraints much easily using
first-order logic and can learn the model based on these con-
straints. As a result, SRL models, namely Markov Logic
Networks (MLNSs) (?), have been used for these tasks (?; ?;
?). But most of these approaches still relied on generating
features from structured data. In our approach, we repre-
sent the structured data (e.g. parse trees) obtained from the
Stanford toolkit using first-order logic and learn the struc-
ture of a SRL model called as Relational Dependency Net-
works (RDN) (?), to discover these features. Relational De-
pendency Networks (RDNs) are SRL models that consider
a joint distribution as a product of conditional distributions.
One of the important advantages of RDNss is that the models
are allowed to be cyclic. As shown in the next section, we
use MLNs to specify the weakly supervised world knowl-
edge.

3 Structure Learning for Information
Extraction Using Weak Supervision

One of the most important challenges facing many natural
language tasks is the paucity of the “gold standard” exam-
ples. We outline our proposed method in detail in this sec-
tion. Our method consists of two distinct phases: weak su-
pervision phase where we create weakly supervised exam-
ples based on commonsense knowledge and information ex-
traction phase where we learn the structure and parameters
of the models that predict relations using textual features.



3.1 Weak Supervision Phase

We now explain our first phase in detail. As mentioned ear-
lier, the key challenge in information extraction is obtaining
annotated examples. To address this problem, we employ a
method that is commonly taken by humans. For instance,
consider reading a newspaper sports section about a particu-
lar sport (say NFL). Before we even read the article, we have
an inherent inductive bias — we expect a high ranked team
(particularly if it plays at home) to win. In other words, we
rarely expect “upsets”. We aim to formalize this notion by
employing a model that captures this inductive bias to label
examples in addition to the gold standard examples.

We employ the formalism of Markov Logic Networks
(MLNSs) to capture this world knowledge. MLNs (?) are
relational undirected models where first-order logic formula
correspond to the cliques of a Markov network and formula
weights correspond to the clique potentials. A MLN can
be instantiated as a Markov network with a node for each
ground predicate (atom) and a clique for each ground for-
mula. All groundings of the same formula are assigned the
same weight, leading to the following joint probability dis-
tribution over all atoms: P(X = z) = £ exp (3, win;(z))
, where n;(z) is the number of times the ith formula is sat-
isfied by possible world = and Z is a normalization constant
(as in Markov networks). Intuitively, a possible world where
formula f; is true one more time than a different possible
world is e times as probable, all other things being equal.
There have been several weight learning, structure learning
and inference algorithms proposed for MLNS.

One of the reasons for using MLNs to capture common-
sense knowledge is that MLNs provide an easy way for do-
main expert to specify the background knowledge as first-
order logic clauses. Effective algorithms exist for learning
the weights of these clauses given data. In our work, we use
the Tuffy system (?) to learn the weights and perform infer-
ence on the MLNs. One of the key attractions of this Tuffy
system is that it can scale to millions of documents and thus
can provide a very efficient tool.
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Figure 1: Steps involved in creation of weakly supervised exam-
ples.

Our proposed approach for weak supervision is presented
in Figure ??. Our first step is to employ a MLN that cap-
tures some commonsense knowledge about the domain of
interest, called as WMLN. For the NFL domain, some of the
rules that we used are shown in Table ??. As can be observed
from the table, our method uses some common knowledge

such as “Home team is more likely to win the game” (first
two clauses) and “High ranked team is more likely to win
the game” (last two rules). Another clause that we found
to be particularly useful is to say that “A team that is higher
ranked and is the home team is more likely to win the game”.

We learn the weights of these rules by extracting the pre-
viously played NFL games. Note that the rules are written
without having the knowledge base in mind. These rules are
simply written by the domain expert and they are softened
using a knowledge base such as Wikipedia. The resulting
weights are presented in the left column of the table. We
used the games played in the last 20 years to compute these
weights. Note that one could simply define a higher ranking
using the following MLN clause where ¢ denotes a team, r
its rank, y the year of the ranking and h R the higher rank:
oo rank(tl,rl,y), rank(t2,r2,y),t1 = t2,r1 < r2 —
hR(t1,t2,y).

0.33 | home(g, t) — winner(g, t)
0.33 | away(g, t) — loser(g, t)
oo | existt2 winner(g, tl), tl !=t2 — loser(g, t2)
00 exist t2 loser(g, t1), tl !=t2 — winner(g, t2)
0.27 | tInG(g, t1), tInG(g, t2), hR(t1, t2, y) — winner(g, t1)
0.27 | tInG(g, t1), tInG(g, t2), hR(t1, t2, y) — loser(g, t2)

Table 1: A sample of WMLN clauses used for NFL task. ¢ denotes
a team, g denotes a game, y denotes the year, tInG denotes that
the team ¢ plays in game g, hR(¢1,¢2, y) denotes that ¢1 is ranked
higher than ¢2 in year y.

Once the WMLN weights are learned, we proceed to cre-
ate weakly supervised learning examples. To this effect, we
identify interesting (unannotated) documents — for example,
sport articles from different news web sites. We use a stan-
dard NLP tool such as the Stanford NLP toolkit to perform
entity resolution to identify the potential teams, games and
the year in the document. Once these entities are identified,
we query the WMLN for obtaining the posterior on the re-
lations between these entities — for example, game winner
and loser relations from NFL articles. Recall that to perform
inference, evidence is required. Hence, we use the games
that have been potentially played between the two teams
(again from previously played games that year) to identify
the home, away and ranking of the teams. We used the rank-
ings at the start of the year of the game as a pseudo reflection
of the relative rankings between the teams.

The result of the inference process are the posterior prob-
abilities of the relations between the entities extracted in the
documents. The resulting relations are then used as anno-
tations. One simple annotation scheme is using the MAP
estimate (i.e., if the probability of a team being a winner
is greater than the probability of being the loser, the rela-
tion becomes positive example for winner and a negative
example for loser). An alternative method would be to use
a method that directly learns from probabilistic labels which
we focus in this work by modifying the learning algorithm.
Choosing the MAP would make a strong commitment about
several examples on the borderline. Note that since our
world knowledge is independent of the text, it may be the



case that in some examples perfect labeling is not possible.
In such cases, using a softer labeling method would be more
beneficial. Hence, it is necessary to learn from noisy labels
which we do by adapting the existing algorithm. Now the
examples are ready for our next step — learning the model
for information extraction.

3.2 Learning for Information Extraction

Once the weakly supervised examples are created, the next
step is inducing the relations. In order to do so, we em-
ploy the procedure presented in Figure ??. We run both the
gold standard and weakly supervised annotated documents
through Stanford NLP toolkit to create relational linguistic
features — lexical, syntactic and semantic features. Once
these features are created, we run the boosted RDN learner
by Natarajan et al. (?). This allows us to create a joint model
between the target relations, for example, game winner and
losers. We now briefly describe the adaptation of boosted
RDN to this task.

Gold standard
documents

~
Set of

relational
facts

N\ 4
RDN RFGB \

Figure 2: Steps involved in learning using probabilistic examples.
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Parser

Weakly
annotated
documents

Assume that the training examples are of the form (x;, y;)
fori = 1,...,Nandy; € {1,..., K}. We use x to denote
the vector of features which in our case are lexical features
and ys correspond to target (game winners and loser) rela-
tions. Relational models tend to consider training instances
as “mega examples” where each example represents all in-
stances of a particular group (example, an university, a re-
search group etc). In our work, we consider each document
to be a mega example and we do not learn across mega ex-
amples i.e., we do not consider cross document learning.

Given the above definitions, the goal is to fit a model
P(y|x) o< e¥®X) for every target relation 3. Functional
gradient ascent starts with an initial potential 1)y and itera-
tively adds gradients A,. After m iterations, the potential
is given by ¥,, = g + Ay + ... + A,,. Here, A,, is
the functional gradient at episode m and is A,, = 7, X
Ey.4]0/0%m_1log P(y|x; ¥m—1)], where n,, is the learn-
ing rate. Dietterich ef al. (?) suggested evaluating the gradi-
ent at every position in every training example and fitting a
regression tree to these derived examples i.e., fit a regression
tree h,, on the training examples [(z;, y;), A (yi; 24)]-

In our formalism, y corresponds to the target relations, for
example gameWinner and gameLoser relation between a
team and game mentioned in a sentence. x corresponds to
all the relational facts associated with these mentions. To
learn the model for a relation, say gameWinner, we start
with an initial model ¥y which returns a constant regression

value for all examples. Based on this initial model, we calcu-
late the gradients for each example as the difference between
the true label and current predicted probability. We learn a
relational regression tree to fit the regression examples and
add it to the current model. We now compute the gradients
based on the updated model and repeat the process. Hence,
in every subsequent iteration, we fix the errors made by the
model. For further details about relational functional gradi-
ent boosting, we refer the readers to Natarajan et al. (?).
Since we use a probabilistic model to generate the weakly
supervised examples, our training input examples will have
probabilities associated with them based on the predictions
from WMLN. We extend the relational functional gradi-
ent boosting approach to handle probabilistic examples by
defining the loss function as the KL-divergence between
the observed probabilities (shown using Pp) and predicted
probabilities (shown using P). The functional gradients for
the KL-divergence loss function can be shown to be the dif-
ference between the observed and predicted probabilities.

Am(m) - aw .

= Pply=1)—Ply=1{Ym-1)

Hence the key idea in our work is to use probabilistic ex-
amples that we obtain from the weakly supervised phase as
input to our structure learning phase along with gold stan-
dard examples (with p = 1 for positive examples), and their
associated documents. Then a RDN is induced by learn-
ing to predict the different target relations jointly, using lin-
guistic features created by the Stanford NLP toolkit. Since
we are learning a RDN, we do not have to explicitly check
for acyclicity. We chose to employ RDNs as they have
been demonstrated to have the state-of-the-art performance
in many tasks(?). We used the modified ordered gibbs sam-
pler for inference.

Yy= ghpmfl)

4 Experimental results

In this section, we present the results of empirically vali-
dating our proposed approach on a natural language domain
of predicting winners and losers. We compared the use of
augmenting with weakly supervised examples against sim-
ply using the gold standard examples. Since we are also
learning the structure of the model, we do not compare to
other distant supervision methods directly but instead point
out the state-of-the-art results in the problem.

4.1 Relation Extraction

The first data set that we evaluate our method is the National
Football League (NFL) data set from LDC corporaz. This
data set consists of articles of NFL games over the past two
decades. This is essentially a natural language processing
(NLP) task. The idea is to read the texts and identify con-
cepts such as winner, and loser in the text. As an easy exam-
ple, consider the text, “Packers defeated Cowboys 28 — 14 in
Saturday’s Superbowl game”. Then, the goal is to identify

*http://www.ldc.upenn.edu
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Figure 3: Results of predicting winners and losers: (a) AUC ROC. (b) AUC PR. Document classification: (¢) AUC ROC. (d) AUC PR.

Greenbay Packers and Dallas Cowboys as the winner and
loser respectively.

The corpus consists of articles, some of which are anno-
tated with the target concepts. We consider only articles that
have annotations of positive examples. There were 66 an-
notations of the relations. We used 16 of these annotations
as the test set and performed training on (a subset) rest of
the documents. In addition to the gold standard examples,
we used articles from the NFL website? for weak supervi-
sion. In our experiment, we wanted to evaluate the impact
of the weakly supervised examples. We used 400 weakly su-
pervised examples. We varied the number of gold standard
examples while keeping the number of weakly supervised
examples constant. In another setting, we used no weakly
supervised examples and simply varied the number of gold
standard examples. The results were averaged over 5 runs of
random selection of gold standard examples.

We measured the area under curves for both ROC and
PR curves. Simply measuring the accuracy on the test set
will not suffice in most structured problems, since predict-
ing a majority class can lead in high performance. Hence we
present AUC. The results are presented in Figure ?? where
the performance measure is presented by varying the number
of gold standard examples. As can be seen, in both metrics,
the weakly supervised examples improve upon the usage of
gold standard examples. The use of weakly supervised ex-
amples allows a jump start, a steeper learning curve and in
the case of PR, a better convergence. It should be mentioned
that while plotting every point, the set of the gold standard
examples is kept constant for every run and the only differ-
ence is whether there are any weakly supervised examples
added. For example, when plotting the results of 10 exam-
ples, for every run, the set of gold standard examples is the
same. For the blue dashed curve, we add 400 more weakly
supervised examples and this is repeated for 5 runs in which
the 10 gold examples are drawn randomly. We also per-
formed t-tests on all the points of the PR and ROC curves.
For the PR curves, the use of weakly supervised learning
yields statistically superior performance over the gold stan-
dard examples for all the points on the curves (with p-value
< 0.05). For the ROC curves, significance occurs when us-
ing 10, and 30 examples. Since PR curves are more con-
servative than ROC curves, it is clear that the use of these
weakly supervised examples improves the performance of
the structure learner significantly. To understand whether
weak supervision clearly helps, we performed another ex-
periment using a baseline where we randomly assigned la-

*http://www.nfl.com

bels to the 400 examples. When combined with 50 gold
standard examples, the performance decreased dramatically
with AUC values of 0.58 for both ROC and PR curves which
clearly shows that the weakly supervised labels help when
learning the structure.

4.2 Document Classification

To understand the general applicability of the proposed
framework, we created another data set for evaluation. In
this data set, the goal is to classify documents either as be-
ing football(American) or soccer articles. Hence the relation
in this case is on the article (i.e.,gametype(article,type)). In
order to do this, we extracted 30 football articles from the
NFL website* and 30 soccer articles from the English Pre-
mier League (EPL) website’ and annotated them manually
as being football and soccer respectively. We used only the
first paragraph of the articles for learning the models since it
appeared that enough information is present in the first para-
graph for learning an useful model. In addition, we used
45 articles for weak supervision. We used rules such as,
“NFL teams play football”, “EPL teams play soccer”, “If
the scores of both teams are greater than 10, then it is a foot-
ball game”, “If the scores of both teams are 0, then it is a
soccer game”.

All the rules mentioned above are essentially considered
as “soft” rules. The weights of these rules were simply set
to 100, 10, 1 to reflect the log-odds. Note that we could
learn these weights as in the NFL cases, but the rules in
this task are relatively simple and hence we simply set the
weights manually. During the weak supervision phase, we
used the entities mentioned in the documents as queries to
the world MLN to predict the type of game that the entities
correspond to. These predictions (probabilities) become the
weak supervision for the learning phase. We labeled the 45
articles accordingly and combined them with the manually
annotated articles.

As with the NFL data, we measured the AUC ROC and
PR values by varying the number of gold standard exam-
ples. Again, in each run, to maintain consistency, we held
the gold standard examples to be constant and simply added
the weakly supervised examples. The results are presented
in Figure ??. The resulting figures show that as with the ear-
lier case, weak supervision helps in improving the perfor-
mance of the learning algorithm. We get a jump start and a
steeper learning curve in this case as well. Again, the results

“http://www.nfl.com
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are statistically significant for small number of gold stan-
dard examples. Both experiments conclusively prove that
adding probabilistic examples as weak supervision enables
our learning algorithm to improve upon its performance in
the presence of small number of gold standard data thus
validating the hypothesis that world knowledge helps when
manual annotations are expensive.

5 Conclusion

One of the key challenges for applying learning methods in
many real-world problems is the paucity of good quality la-
beled examples. While semi-supervised learning methods
have been developed, we explore another alternative method
of weak supervision — where the goal is to create examples
of reasonable quality that can be relied upon. We considered
the NLP tasks of relation extraction and document extrac-
tion to demonstrate the usefulness of the weak supervision.
Our key insight is that weak supervision can be provided
by a “domain” expert instead of a “NLP” expert and thus
the knowledge is independent of the underlying problem but
is close to the average human thought process — for exam-
ple, sports fans. We used the weighted logic representation
of Markov Logic networks to model the expert knowledge,
learn the weights based on history and make predictions on
the unannotated articles. We adapted the functional gradient
boosting algorithm to learn relational dependency networks
for prediciting the target relations. Our results demonstrate
that our method significantly improves the performance thus
reducing the need for gold standard examples.

Our proposed method is closely related to distant super-
vision methods. So it will be a very interesting future di-
rection to combine the distant and weak supervision exam-
ples for structure learning. Combining weak supervision
with other advice taking methods is another interesting di-
rection. This method can be seen as giving advice about the
examples, but Al has a long history of using advice on the
model, the search space and examples. Hence, combining
them might lead to a strong knowledge based system where
the knowledge can be provided by a domain expert and not
a AI/NLP expert. Finally, it is important to evaluate the pro-
posed model in other similar tasks.
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