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1 Introduction
Measuring the amount of rainfall on a specific field is an im-
portant issue in agriculture. The basic way to measure the
amount of rainfall is to plant rain gauges on the ground and
use them to carry out the measurement. However it is not
possible to plant gauges on every field. Therefore remote
sensing instruments such as radars are applied to measure
the amount of rainfall. The output of radars do not exactly
match the measurements of the gauges. The output of radars
are corrected using the nearby gauges and a single distri-
bution is provided to users. In this project, we will address
the problem of finding the probability distribution of rainfall
using Bayesian networks 1.

The obtained distribution using Bayesian network highly
depends on the structure of the network and the relation of
variables in the network. We explore two approaches to build
the structure of a Bayesian network. First, we manually de-
sign the structure of the network based on domain knowl-
edge. Domain knowledge is obtained by studying the 18 fea-
tures provided in the dataset and figuring out the dependen-
cies that hold between these variables. Second, we learn the
structure of the network using learning algorithms. This pa-
per is structured as follows: In Section 2 we will provide a
brief review of studies on different features of the dataset. In
Section 3 we present our methodology, where we introduce
the data, analyze the dependencies between features, and
present the Bayesian network structures. Section 4 contains
the results of predicting the probabilities using both the man-
ually designed Bayesian network and the learned Bayesian
network, and a comparison to two baseline methods.

2 Related Work
Weather radars have been used for locating precipitation and
estimating different types of weather situations for many
years. By introduction of Polarimetric Doppler radars, new
studies have been conducted to provide more accurate esti-
mation of rainfall rate. The most basic method for rainfall
rate estimation was based on the reflectivity measurement
provided in equation 1.
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1https://www.kaggle.com/c/how-much-did-it-rain

In (Zrnic 1999) Zrnic provides the information about the
relationship of differential phase (KDP ) and rainfall rate. It
is shown that this relation is almost linear which is shown in
equation 2. This method outperforms the conventional rain-
fall rate estimation method based on reflectivity in cases that
hail contamination, partial radar beam blockage, attenuation
in rain exists. But, it is mentioned that differential phase is
not sensitive to drop size distribution variations, presence of
dry and tumbling hail.

On the other hand, the estimates of rainfall rates had a
tendency to be noisier when the sizes of drops were smaller.
Seliga et al (Seliga and Bringi 1976) introduced the differ-
ential reflectivity parameter ( ZDR ), which is defined as the
ratio of radar reflectivities at horizontal and vertical polar-
ization. This parameter is sensitive to size of drop and there-
fore rainfall rate estimates based on this parameter joint with
radar reflectivity provide more accurate estimations with
smaller errors. But, there are some biases introduced into
ZDR measurements due to mismatches in radar beam pat-
terns at horizontal and vertical polarization and sidelobes.

Gorgucci and Scarchilli (Gorgucci, Scarchilli, and Chan-
drasekar 1994) suggest the formula presented in equation 3
to estimate rainfall rate.This method combines the differen-
tial reflectivity ( ZDR ) information with differential phase (
KDP ).

The fourth type shown in equation 4 combines the differ-
ential reflectivity with radar horizontal reflectivity (Z) in or-
der to estimate rainfall rate (Bringi and Chandrasekar 2001).

In the following formulations, Z shows the radar reflec-
tivity at horizontal polarization, KDP shows the differential
phase, ZDR shows the differential reflectivity.

R(Z) = 0.017Z0.714 (1)

dataR(KDP ) = 42.8|KDP |0.802sign(KDP ) (2)

R(KDP , ZDR) = 51.0K0.968
DP Z−0.462DR (3)

R(Z,ZDR) = 0.0067Z0.93Z−3.43DR (4)

Ryzhkov in (Ryzhkov, Schuur, and Zrnic 2002) argues
that the last two formulations are not robust at low values
of ZDR. Therefore they suggest the following equations for
estimation of rainfall rates.



{
R(KDP , ZDR) = 53.7K0.91

DP Z
−0.421
DR ZDR > 0.5

R(KDP , ZDR) = 70.0K0.878
DP 10−0.131ZDR ZDR < 0.5

}
(5)

{
R(Z,ZDR) = 0.0064Z0.824Z−0.654DR ZDR > 0.5

R(Z,ZDR) = 0.014Z0.81310−0.266ZDR ZDR < 0.5

}
(6)

The goal of this project is to predict the rainfall rates based
on the polarimetric radar measurements and other features
extracted from these readings. In this regard, we would take
advantage of having more features. For example, the rain
rates extracted from the afformentioned methods would in
addition Hydrometeor type and correlation coefficient fea-
tures would be used as the input features to our method.
Methodology

2.1 Features and Dependencies
In this Section, we describe each feature present in the radar
measurements. This information is used to manually build a
Bayes network structure, as explained later.

• TimeToEnd: This features shows that the specified radar
observation time in terms of minutes left to one hour ob-
servation. This feature is dependent on measurements fea-
tures because the time to end feature shows the different
times of measuring the values which is shown in the mea-
surement feature after averaging.

• DistanceToRadar: This feature shows the distance from
radar to gauge. Each value in this column maps to each
time value in the TimeToEnd column. Therefore there can
be multiple readings in 1 hour. In the same sense as time to
end, distance to radar feature had different measurements
of different times and therefore is related to the measure-
ment column.

• Composite: This feature shows maximum reflectivity in
vertical column above gauge i.e. the maximum dBZ re-
flectivity from any of the reflectivity angles. Reflectiv-
ity shows the precipitation intensity at that specific angle
above the horizon. In the Composite, the highest intensi-
ties amongst those available in the different angles above
each point of the image, will be considered.

• HybridScan: Reflectivity in elevation scan closest to
ground. The objective is to utilize reflectivity measure-
ments from as close to 1-km altitude above radar level as
possible while minimizing the likelihood of ground clut-
ter and data loss due to terrain blockages. This feature is
dependent on composite value. It is mentioned in (com
2004) that NEXRAD scans in several angles where the
radar makes a 360-degree horizontal sweep with the radar
antenna tilted at the given angle above the horizontal, then
changes the elevation angle, and completes another 360-
degree sweep, and so on. Therefore the hybrid scan as be-
ing the reflectivity closest to ground is dependent on this
scan.

• HydrometeorType: One of nine categories in NSSL HCA:
no echo, moderate rain, heavy rain, rain/hail, big drops,

AP, Birds, Unknown, dry snow, wet snow, ice crystals,
graupel. Based on the automatic classification of hy-
drometeor types algorithm introduced in (Zrnic et al.
2001), the algorithm takes as input reflectivity, differen-
tial reflectivity (ZDR), specific differential phase (KDP ),
cross-correlation coefficient (RhoHV ). Therefore, the
HydrometeorType is dependent on these features in the
proposed Bayesian Network structures.

• Reflectivity (in dBZ): A traditional non-polarised radar
will measure only the reflectivity at each gate which is
the same as horizontal reflectivity in Polarimetric Doppler
radars.

• KDP : Differential phase. The specific differential phase
is a comparison of the returned phase difference between
the horizontal and vertical pulses. This change in phase
is caused by the difference in the number of wave cycles
(or wavelengths) along the propagation path for horizon-
tal and vertically polarized waves.

• RhoHV : Cross-correlation coefficient. A statistical cor-
relation between the reflected horizontal and vertical
power returns. It is a good indicator of regions where there
is a mixture of precipitation types, such as rain and snow.
High values, near one, indicate homogeneous precipita-
tion types, while lower values indicate regions of mixed
precipitation types, such as rain and snow, or hail.

• ZDR : Differential reflectivity in dB: The differential re-
flectivity is the ratio of the reflected vertical and horizon-
tal power returns as ZV /ZH . Among other things, it is a
good indicator of drop shape and drop shape is a good
estimate of average drop size.

• RR1: Rain rate from HCA-based algorithm. Based on
(Laboratory 2007), HCA algorithm is used to remove
non meteorological and therefore improve rainfall rate
estimates. Therefore, RR1 is dependent on Hydromete-
orType, ZDR, RhoHV and KDP .

• RR2: Rain rate from ZDR -based algorithm. Rainfall rate
estimation based on ZDR is shown in equation 3. There-
fore, this feature is dependent on ZDR.

• RR3: Rain rate from KDP -based algorithm. Rainfall rate
estimation based on KDP is shown in equation 2. There-
fore, this feature is dependent on KDP .

• Velocity: Doppler velocity. It gives only the radial vari-
ation of distance versus time between the radar and the
target. The phase between pulse pairs can vary from −
and + , so the unambiguous Doppler velocity range is
Vmax = /4t

• LogWaterVolume: How much of radar pixel is filled with
water droplets?

• MassWeightedMean: Mean drop size in mm. Based on
(Bringi and Chandrasekar 2001), it is known that ZDR

and KDP provide information about shape and size of
rain drops. Therefore, this feature is dependent on these
two radar measurements.

• MassWeightedSD: Standard deviation of drop size. For
the same reason provided for MassWeightedMean fea-



ture, the MassWeightedSD is also dependent on ZDR and
KDP .

• RadarQualityIndex: A value from 0 (bad data) to 1 (good
data). This index is computed based on the Quality Con-
trol algorithm introduced in (Lakshmanan et al. 2007).
They use a neural network to combine multiple features
into a single discriminator that can distinguish between
good and bad echoes. This algorithm operates on six mo-
ments available from polarimetric radar: Reflectivity (Z),
Velocity (V ), Correlation Coefficient (RhoHV ), Differ-
ential Reflectivity (ZDR) and Differential Phase (KDP ).
Therefore, this RadarQualityIndex is dependent on these
features.

• ReflectivityQC: Quality-controlled reflectivity. This fea-
ture is dependent on RadarQualityIndex and Reflectivity.

• Expected: The actual amount of rain reported by the
rain gauge for that hour. This feature is dependent
on Composite, QualityControlIndex, MassWeightedSD,
MassWeightedMean, RR1, RR2, RR3, LogWaterVol-
ume, MassWeightedMean, Velocity, DistanceToRadar
and TimeToEnd.

2.2 Building the Bayesian Network Structure
Manually

Based on the features and studied dependencies between
them provided in Section 3.1, we propose the Bayesian net-
work structure presented in Figure 1.

2.3 Learning the Bayesian Network Structure
Besides designing the Bayesian network structure manually,
we also employed structure learning algorithms to learn the
structure based on the data. We tried several structure learn-
ing algorithms that employ a Bayesian metric. The Bayesian
metric assumes Dirichlet priors and is given by (Bouckaert
2008):

QBayes(G,D) = P (G)

n∏
i=0

qi∏
j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

ri∏
k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)

where ri is the cardinality of variable xi, qi is the cardinality
of the parent set of xi in structure G, n is the number of ran-
dom variables, Nijk is the number of records in the dataset
D for which Pa(xi) takes the jth value and for which xi

takes the kth value, and Nij =
ri∑

k=1

Nijk. P (G) is the prior

on the network structure and Γ(.) the gamma function. N ′ij
and N ′ijk represent choices of priors on counts restricted by

N ′ij =
ri∑

k=1

N ′ijk.

We explored greedy algorithms such as Hill Climbing
(Buntine 1996) and K2 (Cooper and Herskovits 1992). How-
ever we found that, for our domain, these algorithms were
simply learning a network structure where all features are
conditionally independent given the class (Naı̈ve Bayes).

Then, we tried Simulated Annealing (Bouckaert 1995) as an
alternative to greedy approaches. We found this approach to
give better results, which are presented in the next Section.

3 Results and Discussion
3.1 Data
We employed the dataset provided by (Lakshmanan 2015).
This dataset contains measurements of Polarimetric radars.
It consists of NEXRAD and MADIS data collected the first
8 days of April to November 2013 over Midwestern corn-
growing states. Polarimetric radars give more accurate read-
ings than conventional radars, as they can infer the drop size
and therefore improve the estimate of rainfalls. Time and lo-
cation information have been censored, and the data is not
ordered by time or place. The test data consists of data from
the same radars and gauges over the same months but in
2014.

For our experiments, we employed a subset of the training
dataset for efficiency reasons. We randomly selected 10,000
training examples from the entire dataset, and used this to
train all our models. We used the full testing set, which con-
tains 630451 instances, as we needed to make predictions for
all the instances in order to submit our results to the kaggle
competition.

The data obtained from Polarimetric radars is feature-
based. However some instances contain multiple readings
for the same feature. That is, some features have composite
values. To overcome this issue, we aggregated the composite
values into one single value. The aggregate function that we
used for most features was the mean function. Only for the
TimeToEnd feature, we applied the following function:

V =
max(time)−min(time) + 6

60

The number 6 assumes that readings are done in 6-minute
timesteps. The number 60 works as a normalization con-
stant.

Because we are aggregating composite values into single
values, we may be losing some information. However, we
believe that multiple readings (composite values) should be
more accurate. Therefore, we added a feature that indicates
the number of readings for the instance. This way, instances
with multiple readings may have higher weights.

3.2 Experiments
We have used Weka (Hall et al. 2009), a popular set of ma-
chine learning tools implemented in Java, to carry out the ex-
periments. As a benchmark, we have used Logistic Regres-
sion to predict the probability distribution of rain amount.
We have also included the results of using Naı̈ve Bayes and
applying simple estimation of conditional probabilites. Sim-
ple estimation is based on the following formula (Bouckaert
2008):

P (xi = k|Pa(xi) = j) =
Nijk + α

Nij +M × α

where Nijk is the number of instances where Pa(xi) takes
the jth value and xi takes the kth value, and Nij is the



Figure 1: Proposed Bayesian network structure based on the study on features and their dependencies.

Algorithm CRP
Logistic Regression 0.01096134

Naı̈ve Bayes 0.01452578
Bayes Net - Manually Designed Structure 0.00965175

Bayes Net - Simulated Annealing 0.00864957

Table 1: Continuous Rank Probability (CRP) of different al-
gorithms.

number of instances where Pa(xi) takes the jth. Parameter
α = 0.5 is used for smoothing. Setting it to zero will lead to
maximum likelihood estimation. M is the size of data-set.

The results of employing different algorithms and ap-
proaches are presented in Table 4.2. Different approaches
are compared based on Continuous Ranked Probability
Score:

C =
1

70N

∑
N

∑
n=0

69(P (Y ≤ n)−H(n− z))2

N is the size of test data set, z is the actual label, H is unit
step function and P is the cdf for the amount of rain. C
represents the distance between forecasted cdf and the real
cdf and our goal is to minimize the value of C.

Greedy structure learning algorithms, such as Hill-
Climbing (Buntine 1996) and K2 (Cooper and Herskovits
1992), generated a structure similar to Naı̈ve Bayes. So
they did not improve the final results. On the other hand,
the network with the manually designed structure as ex-
plained in Section 3 takes into account the dependencies
between different variables. Applying simple parameter es-
timation on this structure leads to better results comparing
to our baselines, Logistic Regression and Naı̈ve Bayes, and
greedy structure learning algorithms. Using structure learn-
ing with a non-greedy algorithm, such as simulated anneal-
ing, showed to be very helpful, as it got the best results.

Results show that employing domain expert to build the
structure of a network can be useful. This approach got bet-
ter results than traditional learning algorithms, and even bet-
ter results than Bayesian networks with structures learned in
a greedy way. On the other hand, non-greedy structure learn-
ing algorithms proved to even get better results. Therefore,

this approach is certainly the best approach when enough
data is available and time is not an issue.

4 Conclusion
In this paper we explored the use of Bayesian networks to
find the distribution of rainfall given measurements from Po-
larimetric radars. We employed two different approach for
constructing the structure of the Bayesian network. First, we
manually designed the structure based on domain knowl-
edge. Doing this required an extensive study of the features
present in the dataset and the dependencies between them.
Second, we applied a structure learning algorithm to learn
the structure automatically from data. Results showed that
the Bayes network with the structure learned from data per-
formed best. The Bayes network with manually designed
structure did not do as well, but it was still better than our
baselines.

As a future work, it would be interesting to have a do-
main expert study the features and provide the dependen-
cies between them. It would also be interesting to try undi-
rected models, such as Markov networks. This is because
many times dependencies exist between features, but it is not
clear what is the direction of the dependency. Furthermore,
it would be interesting to try different aggregation functions
for features, based on their nature. We employed the mean
function for all features. However, other functions may be
more appropriate for some features. Finally, learning both
structure and parameters with the full dataset, instead of a
subset, would be interesting. The dataset contains 70 labels,
therefore a bigger dataset would give a better picture of the
distribution of the labels.
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